A Survey of the High-field ¹H NMR Spectra of the Steroid Hormones, their Hydroxylated Derivatives, and Related Compounds

David N. Kirk,* Harold C. Toms, Christal Douglas, and Karen A. White Department of Chemistry, Queen Mary and Westfield College, Mile End Road, London E1 4NS Kelvin E. Smith, Shahid Latif, and Robert W. P. Hubbard School of Biological Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS

¹H NMR chemical shifts are presented for virtually all the protons in 166 steroids. These comprise mainly the hormones testosterone, androst-4-ene-3,17-dione, progesterone, and a wide range of their hydroxylated derivatives, some corticosteroids including aldosterone and a series of its derivatives, together with miscellaneous steroids comprising a variety of androstane and pregnane derivatives, bile acids, and sterols, to provide the first extensive collection of data for use in correlating ¹H chemical shifts with structure.

Most of the spectra were assigned with the aid of two-dimensional ¹H homonuclear correlated spectroscopy (COSY), or in a few cases by use of ω_1 -decoupled COSY (COSYDEC) spectroscopy. Limited use was made of other techniques, especially selective nuclear Overhauser effect difference spectroscopy (NOEDS), to complete the more difficult assignments. Procedures for the rapid analysis of high-field ¹H NMR spectra of steroids are suggested: they include the application of templates for the recognition of signals due to particular protons from their characteristic profiles, which generally vary only slightly between different steroids unless simplified by adjacent substitution. Substituent increments for *all* protons are reasonably additive, except where drastic conformational change occurs or adjacent substituents interact strongly. The conformational dependences of hydroxy-substitution increments are analysed empirically, and some regularities are identified.

Full assignment of ¹³C NMR spectra of steroids has been a routine procedure for more than a decade. Tabulations of ¹³C chemical-shift data for over 400 steroids were published in 1977,¹ and many more spectra have been analysed since that time.^{2–4} The simplicity of proton-decoupled ¹³C spectra, with a single line for each carbon atom, and the availability of various pulse sequences for distinguishing between carbon atoms according to the number of attached protons, facilitated early studies. More recently, carbon–carbon connectivities have been directly determined (*e.g.* INADEQUATE ^{5–9}). Large samples are required, however. The structural and substituent effects that control ¹³C chemical shifts are well documented,^{1.10} allowing good estimates to be made for individual carbon atoms.

¹H Spectra, in contrast, are complicated by extensive interproton coupling, and for compounds with the complexity of steroids, by overlap of multiplet signals which made resolution of the so-called 'methylene envelope' impossible with early spectrometers. Full assignments had to await the advent of highfield spectrometers operating in the pulsed Fourier transform mode under computer control. The first such assignment was reported in 1980¹¹ for 17β-hydroxyandrosta-1,4-dien-3-one (1dehydrotestosterone) at 400 MHz, by use of a combination of one- and two-dimensional techniques, including decoupling-difference and nuclear Overhauser difference (NOEDS) methods, and two-dimensional J spectroscopy. Since that time, full assignments of ¹H spectra have been reported in a number of publications which present data either for single steroids or for small groups of related steroids.^{11-36,40} Two-dimensional methods have been particularly useful, and are reviewed.^{30,31} ¹H homonuclear two-dimensional shift-correlated spectroscopy (2D COSY)^{9,19-24,26-36,40} offers the advantage of requiring samples at only the 1 mg level to give spectra of high auality.^{21.30.32} Å variation of the COSY method (COSY LR), which optimises the detection of weak couplings, reveals longrange ${}^{1}H{-}^{1}H$ couplings through specific bond paths in steroids

and other alicyclic molecules: ³⁴ such information can help greatly in the assignment of signals in ¹H spectra (see below). One group has used two-dimensional spin-echo J-correlated spectroscopy (SECSY) to good effect for some 19-nor steroids.^{16–18} Two-dimensional ${}^{1}H{}^{-13}C$ heteronuclear correlated spectra ${}^{9.14{}-18,20{}-24,27{}-33,36,40}$ offer a particularly powerful method whenever the ¹³C assignment is available, and provided that the sample size is adequate. This method alone, however, does not distinguish between the protons of geminal pairs (methylene groups). Completion of difficult ¹H assignments has often required the use of NOEDS, especially to distinguish signals from protons on the β -face of the steroid molecule by irradiation of the C-18 and/or C-19 methyl protons.^{11–13} Accurate measurements of ¹H–¹H geminal ^{37–39} and vicinal coupling constants^{38,39} have been shown to provide information on the conformation of ring A in steroidal 4-en-3-ones. Full ¹H assignments have also been reported for three pentacyclic triterpenes.41

Making full ¹H assignments is still not a trivial matter, however, since even at the highest field strengths routinely available, ¹H signals and 2D COSY cross-peaks are liable to overlap. Relayed coherence transfer 2D spectroscopy has recently been recommended⁴² as an effective method for overcoming the problems of overlapping multiplets. The effects of substitution and structural changes on ¹H chemical shifts in essentially saturated polycyclic systems of steroid type have not yet been comprehensively analysed, even in an empirical way, although a few such effects have been recorded for miscellaneous functional groups.^{21,24,25}

The aim of this paper is to begin an overview of the high-field ¹H NMR spectra of steroids by reporting and collating the results of an analysis of spectra of the steroid hormones testosterone (17β -hydroxyandrost-4-en-3-one), androstenedione (androst-4-ene-3,17-dione), and progesterone (pregn-4-ene-3,20-dione) and a wide range of hydroxylated and other

derivatives of these hormones; the principal Δ^4 -3-oxo corticosteroids²⁴ as well as aldosterone⁹ and a number of its derivatives are also included, as well as the limited data available for bile acids^{20,27} and sterols.^{32–34,36} Some of the compounds were available to us from the Steroid Reference Collection. Others came from a programme of microbiological hydroxylations^{43–46} and from studies on aldosterone metabolism,^{47–49} now in progress in our laboratories. To make the coverage as full as possible, we have included all data for steroids found in the literature to date, excluding only the oestrogens, which will be the subject of a later paper.

The present objective is not merely to tabulate and analyse spectra. We aim also to provide a basis, like that already existing for ¹³C, for the more rapid assignment of such ¹H spectra in future. Given the very much improved sensitivity of modern high-field spectrometers, we are concerned to develop the use of ¹H spectroscopy as an efficient and routine tool for structural studies on new or unidentified steroids from biological sources, often available in amounts so small as to preclude use of the full panoply of NMR methods. Specifically, if the steroidal material available is at sub-milligram level, and contaminated by nonsteroidal matter as is often the case with extracts from biological sources even after repeated chromatographic (HPLC or TLC) purification, ¹³C spectroscopy and some of the more demanding, albeit more informative, methods for ¹H study and ¹³C-¹H correlation are still beyond the routine capability of even the best modern spectrometers. Mass spectrometric methods, although applicable in principal to trace amounts of material, need either highly purified samples or combined gas chromatography-mass spectrometry on appropriate steroid derivatives (e.g. volatile esters or silvl derivatives). Although mass spectrometry is often a valuable tool for structural investigations, in our experience it may lead to incorrect assignments of configuration which have had to be corrected by subsequent NMR studies and synthesis.50,51

We find that even quite highly contaminated steroid samples, at levels as low as tens of micrograms, often give well resolved high-field (400 or 500 MHz) ¹H spectra in which most of the features associated with a particular steroid structure can be discerned with 'finger-print' precision. As a 'finger-printing' method, we now regard high-field NMR as more detailed and reliable than the long-established IR spectroscopy. High-field NMR is also more revealing than IR spectroscopy in that impurities, including solvent traces and contaminating steroids, can be more readily detected and often approximately quantified from their separate and weaker signals in the spectra.

Normally, only methyl proton signals can be observed clearly in the high-field region of steroid spectra determined at up to 100 MHz. Tables of $18 \cdot H_3$ and $19 \cdot H_3$ chemical shifts and increments for a wide range of steroid structures and substituents were compiled by Zürcher over 30 years ago,^{52,53} and were refined subsequently by Oxford chemists.⁵⁴ The latter also published ⁵⁴ an invaluable set of diagrams showing the profiles of signals from methine protons geminal to hydroxy groups at the various steroid locations. Profiles vary widely, according to the numbers of vicinal protons and the torsion dependence ^{55,56} established by Karplus.

It has been customary until very recently, in papers concerned with steroids, to report only the methyl-group chemical shifts, and any methine and other signals outside the methylene envelope (e.g. for aromatic, alkenic, carbinol, or epoxide protons). We feel that the time is now ripe for publications to include full tabulations of ¹H chemical-shift data for steroids and related compounds whenever possible, for inclusion in computerised databases to aid future studies. Any special features of these spectra relating to structure or conformation should be highlighted. We doubt, however, whether routine publication of all ¹H-¹H coupling constants would yet justify the much more demanding studies needed to derive them accurately. Precise J values are normally required only for detailed conformational investigations (e.g. refs. 37-39). In our experience, and as was pointed out recently, 30 J values and the resulting splitting patterns vary only slightly between related steroids in the great majority of cases: all that is normally required for structure determinations is a distinction between large axial-axial couplings and the smaller J values which result from other geometric relationships.^{55,56}

In the hope of encouraging fuller publication of ¹H chemicalshift data, we suggest below how high-field spectra of steroids may now be relatively quickly analysed with sufficient precision for normal purposes.

Methods Used in this Study.-One-dimensional and twodimensional (COSY) ¹H spectra were obtained, mainly at 400 or 500 MHz. In a few cases 250 MHz spectra proved adequate. Deuteriochloroform $(CDCl_3)$ was chosen as the solvent for the broad range of steroids where solubility permitted. The more highly oxygenated steroids, mainly the corticosteroids including aldosterone and its derivatives, were examined in CD₃OD, being almost insoluble in CDCl₃. The few compounds studied in both CDCl₃ and CD₃OD, for comparison, showed that chemical shift differences for particular protons are normally quite small although not always negligible. Deuteriobenzene $(C_6D_6)^{13.26,36.57}$ and deuteriopyridine (C_5D_5N) ,^{57.58} by contrast, are known to produce very large solvent effects especially for those protons in the vicinity of functional groups. These shifts may be exploited in special cases to improve spectral resolution (e.g. ref. 13), but have not been explored in the present study.

One-dimensional spectra were plotted on a uniform scale of 10 Hz cm^{-1} whatever the spectrometer frequency, for the reason explained below. 2D COSY spectra were also obtained in most cases, and were analysed graphically in the usual way to relate sets of mutually coupled protons. In a few of the more recent cases, ω_1 -decoupled 2D COSY (COSYDEC) spectra⁵⁹ were recorded, either as an alternative or as a supplement to the normal 2D COSY spectrum. The potential of the COSYDEC method for resolving problems of COSY cross-peak overlap in steroid spectra is described elsewhere.⁵⁹

The only other two-dimensional method readily applicable to very small samples, two-dimensional J-spectroscopy, has proved to be of little value compared with COSY and COSYDEC, despite its earlier use¹¹⁻¹³ and the suggestion³⁰ that 'pattern recognition' applied to J-resolved cross sections might be useful for signal assignment. In our experience and that of others,²¹ cross-sections are often difficult to interpret, and artefacts may interfere,⁵⁷ especially when two or more protons resonate close together on the chemical-shift scale.

Graphical analysis of 2D COSY spectra has generally involved initial recognition of especially distinctive signals (e.g. those for 4-H in 4-en-3-ones, for protons geminal to hydroxy groups, and for 17-H in pregnan-20-ones and testosterone derivatives), and location of signals from protons coupled to these by recognition of their cross peaks. Sets of coupled protons were traced stepwise, as far as possible, from such starting points. Of particular value were the 4-H/6β-H correlation in 4en-3-ones resulting from allylic coupling,⁵⁶ as the best pointer to the 6B-H signal, the 17-H/16-H₂ correlations for locating 16α -H and 16 β -H, and often the 9-H/8-H, 7 α -H/7 β -H, and 7 α -H/8-H correlations, since the 9-H and 7α -H multiplets, with characteristic profiles, frequently appear in the high-field region of the spectra especially of 4-en-3-ones and 5α -steroids, where they are usually well separated from other signals. Cross-peaks from long-range coupling 11,12,34 were also helpful when they appeared, particularly relating 18-H₃ to 12a-H and sometimes to 17α -H, and relating 19-H₃ to 1α -H and in some cases to 9-H.

Figure 1. Templates for recognition of ¹H signals from their splitting patterns: Ring A. Vertical scales are not necessarily identical. Lines correspond to *centres* of component peaks of multiplets: (a), (b), and (c), illustrate common variations resulting from slight differences in coupling constants. Simplified profiles usually arise in the vicinity of substituents (see the text and Table 3).

COSYDEC spectra tend to show these long-range couplings very prominently,⁵⁹ in this respect resembling COSY LR.³⁴ Other, often distinctive and helpful features, unless strongly shifted by effects of adjacent subsituents, are the 1 β -H double multiplet normally found at *ca*. δ 2.05 in 4-en-3-ones, and the 11 β -H quartet of doublets normally at *ca*. δ 1.45. Recognition of cross peaks is often aided by noting their fine structure.⁵⁷ In favourable cases, and with adequate digitisation of spectral data, each cross peak comprises a two-dimensional array of contours representing the various pairs of connected transitions. In COSY-45 or COSY-60⁵⁷ spectra, fine-structured cross peaks often form a non-rectangular array: the direction of 'slant' in relation to the diagonal then indicates whether the cross peak results from geminal (*J* negative; *e.g.* 7α -H/7 β -H) or vicinal coupling (*J* positive; *e.g.* 6 β -H/7 α -H).

As the range of fully assigned spectra has widened, recognition of regular features of one-dimensional and 2D COSY spectra has become increasingly a matter of inspection. Chemical-shift increments resulting from the presence of hydroxy groups, derived by comparison of data for monohydroxylated steroids with those for their parent compounds, have assumed considerable value. The increments depend upon geometric relationships between the hydroxy group and the affected protons (see below). Like substituent increments for 18-H₃ and 19-H₃,^{52-54.56} and for ¹³C spectra,^{1.10} they are normally additive within the required limits of accuracy, and now prove to be extremely useful as an aid to locating particular ¹H signals.

In difficult cases, however, assignments could not be completed by inspection because of multiplet or COSY crosspeak overlap. Change of solvent is one way of resolving overlap problems,¹³ but we have deliberately not resorted to this as a routine method, because we had set ourselves the task of devising assignment procedures which would be applicable within each series of related steroids all in the same solvent, for reasons of comparability of chemical shifts. Also, except when necessary to consolidate basic reference data for parent compounds of a series, we denied ourselves the luxury of employing pre-existing ¹³C assignments, *via* two-dimensional heteronuclear ¹H-¹³C correlated spectroscopy, one of our objectives being to devise procedures applicable to quantities of naturally occurring steroids below the levels necessary for such experiments. Similarly, we have used selective nuclear Overhauser effect difference measurements (NOEDS) only as a means for confirming or refining basic reference data obtained by other methods, and we made use of two-dimensional NOE methods (NOESY)^{30,57} in only two particularly troublesome cases where the 5β-configuration made it difficult to locate signals for 8β-H and 9α-H (compounds **93** and **147**).

With the accumulation of more spectra, we came to accept that many proton signals have essentially the same profile across a wide range of related steroids, except when their multiplicities are reduced by the presence of geminal or vicinal substitution or unsaturation. We found it convenient to draw 'templates' corresponding to the characteristic appearances of proton signals, on a transparent plastic sheet which was then used as an overlay for matching multiplet profiles in the spectra. Templates (Figures 1–4) were drawn on a scale of 10 Hz cm^{-1} , which is why spectra were routinely plotted on this scale. Although signal splittings and widths may vary slightly as a consequence of small differences in coupling constants, the templates are a very valuable aid for signal recognition. Multiplets for protons at the 1α -, 1β -, 2β -, 7α -, 7β -, 8β -, 9α -, 11β -, and 17α -positions are usually the easiest to recognise by template fitting, even if partly overlapped by others. Those most liable to variations in profile or multiplicity are for protons at C-14, -15, and -16; this is a consequence of flexibility in the fivemembered ring,^{21,60} but even here templates are valuable, representing 'good average' signal splittings for compounds

Figure 2. Templates for recognition of ¹H signals from their splitting patterns: Ring B. See the legend to Figure 1.

with C-17 either tetrahedral (pregnanes or androstan-17-ols) or trigonal (17-oxo). The 17a-H signal (C-17 tetrahedral) normally appears as either a triplet or a double doublet, depending upon the magnitudes of $J_{16\alpha,17}$ and $J_{16\beta,17}$. Another very variable signal profile is that for 2α -H in 4-en-3-ones (Figure 1): conformational differences ${}^{37-39}$ seem to influence the fine detail of the 2α -H signal more than any other in ring A, among the compounds which we have studied. The 2β -H signal appears more symmetrical in profile than is indicated in Figure 1 whenever deshielding substituent effects move it strongly away from that of 2α -H, reducing second-order effects. The most difficult multiplets to locate accurately were generally those for 11a-H and 14α -H; each signal is split by several spin couplings into a group of rather weak peaks which frequently underlie others; the 'slanted' $11\alpha/11\beta$ cross peak in a COSY-45 or COSY-60 spectrum is often clearly visible, but may be obscured or too close to the diagonal in some cases.

In general, signals were first located as closely as possible from 2D COSY (or COSYDEC) spectra. Many could then be found, and their chemical shifts evaluated more exactly, by examining the normal one-dimensional spectrum with the aid of overlying templates. Where second-order effects due to similarity of chemical shifts of adjacent protons prevented template fitting, the best estimates of δ are those taken directly from COSY spectra. Frequent instances of this problem are the $11\beta/12\alpha$, $14/15\beta$, and $15\alpha/16\alpha$ pairs of protons. Given sufficient

Figure 3. Templates for recognition of 1 H signals from their splitting patterns: Ring c. See the legend to Figure 1.

material, the major part of a typical assignment task, performed manually on 400 or 500 MHz spectra, and accurate to the levels required for present purposes, can now often be substantially achieved in *ca.* 30 min. When NOEDS experiments are necessary to complete the more difficult assignments, these normally involve separate irradiation of the 18-methyl and/or 19-methyl signals to reveal adjacent protons on the β -face of the molecule,^{11.12} irradiation of 4-H in 4-en-3-ones to locate the neighbouring 6 α -H exactly, or in special cases irradiation of the CHOH or 17 α -H to highlight nearby protons on the same face of the molecule.

Chemical shifts are reported in this paper to the nearest 0.01 ppm. We consider this to be sufficient precision for the applications envisaged, and especially having regard to the extent of additivity of substituent increments, as well as the experimental variables including digital resolution in the acquisition of data, solution concentration and temperature, and even the variety of spectrometers in use, with their differing capabilities. We have, whenever possible, obtained spectra for solutions under standardised conditions (see the Experimental section). Some workers have reported chemical shifts with greater precision, $^{14-19.37-40}$ especially when evaluating and optimising experimental procedures. Computer simulation of spectra $^{21.28.35.38.39}$ has been used as the ultimate way of refining both chemical shifts and J-values, especially when the latter are required for conformational studies. For systems comprising

Figure 4. Templates for recognition of ¹H signals from their splitting patterns: Ring D. (a) Patterns often seen when the 17β-position is substituted (e.g. pregnan-20-ones, or androstan-17β-ols; C-17 tetrahedral); (b) alternative pattern often seen in androstan-17-ones (C-17 trigonal). For other information, see the legend to Figure 1.

three or more spins, measurement of signal splittings may not provide accurate J values.³⁸

Compounds Included in this Study .--- Table 1 lists the 166 compounds included in this survey; data for 99 of these arose from our own work. These comprise testosterone and eleven of its monohydroxy derivatives, androst-4-ene-3,17-dione and eleven of its monohydroxy derivatives, as well as progesterone and eighteen of its monohydroxy, and six of its dihydroxy derivatives. Additionally we report data for $\Delta^{1.4}$, $\Delta^{4.6}$, and/or $\Delta^{1.4.6}$ -unsaturated derivatives of these hormones. All these data except for 1-dehydrotestosterone and 11β-hydroxyprogesterone are our own. Published data for progesterone¹⁵ agree almost exactly with ours. In order to enhance the usefulness of this compilation for predictive purposes, and for the assignments of other spectra, we have included data for a variety of other steroids mainly of the pregnane class, including the corticosteroids. Some are taken from the literature, with occasional suggestions that assignments for protons of geminal pairs require reversal (see the Discussion). Others are our own, chosen in several cases as examples to fill gaps in our knowledge of the effects of common structural features. Also included is a series of derivatives of aldosterone, which have arisen in the course of our investigations into products of aldosterone metabolism.47-49 Available data for a few 19-nor steroids (estranes and 19-nor-17 α -pregn-20-vnes, but *not* the aromatic estrogens), bile acids, and sterols are also included.

Results

Table 2 lists the ¹H chemical shifts (δ) and their assignments. The majority of δ values, measured directly from the onedimensional spectra to the nearest 0.01 ppm, were determined after signals from cross-peaks in the 2D COSY or COSYDEC

spectra had first been identified; some signals partially overlapped others, but could still be discerned clearly by fitting the templates, described above, to the one-dimensional spectra. The chemical shifts taken directly from 1D spectra are those in Table 2 which bear no superscript indicative of the use of some special technique. Where signals overlapped in such a way as to make the template-fitting procedure uncertain, and especially where strong second-order perturbations arose from close proximity or superimposition of multiplets arising from mutually spincoupled protons, δ values were estimated as accurately as possible from alignments of cross-peaks in the 2D COSY or COSYDEC spectra. These δ values are appropriately superscripted in Table 2. Errors in such cases are normally considered to lie within the range ± 0.02 ppm. In a very few cases we were left with uncertainties which had to be resolved by NOE measurements. Only in two key cases (androst-4-en-3-one, and aldosterone⁹) was it necessary to resort to ¹³C and ¹H-¹³C correlated spectroscopy to make full assignments. Analyses of the ¹H spectra of compounds with no substituents in rings A, B, or C (e.g. 5α , 17α -pregnan-20-one and 5α -pregnan-16B-ol, each chosen as the only readily available model for its class), made use of published data for the hydrocarbon 5α -androstane.²¹ Similarly, published ¹H spectra for 5a-androstan-3-one and the 5α -androstan-3-ols,²¹ and for the series of bile acids with the 5β -configuration,^{20,27} provided initial data as a basis for the evalution of chemical shifts of protons in compounds with the same features in rings A and B, and lacking unsaturation in these rings. Assignments for cholestane derivatives are based upon the few already reported in the literature, 32.33.34.36 but with some reservations (see the Discussion).

Steroids of 5 β configuration present a particular difficulty in that the 9 α -H multiplet, an important starting point for the location of signals from protons in the middle regions of the molecule, is strongly deshielded by ring A, and shifted into the crowded part of the spectrum around $\delta 1.4$ —1.8. The 9 α -H signal

,CO₂H

Table 1. Steroids included in this study.

		Abbreviations used in Tables 2 and 3	Reference or source *
Estra	nes (including 19-nor-17α-pregn-20-ynes)		
1 2 3 4 5	17α-Chloromethyl-17β-hydroxyestr-4-en-3-one 17α-Azidomethyl-17β-hydroxyestr-4-en-3-one 17α-Cyanomethyl-17β-hydroxyestr-4-en-3-one 17β-Hydroxy-19-nor-5α,17α-pregn-20-yn-3-one 17β-Hydroxy-19-nor-5α,17α-pregn-20-yn-3-one	$17_{\alpha}-CH_{2}Cl$ $17_{\alpha}-CH_{2}N_{3}$ $17_{\alpha}-CH_{2}CN$ $17_{\alpha}-C\equiv CH, 5_{\alpha}-H$ $17_{\alpha}-C\equiv CH, 5_{\beta}-H$	40 40 40 17 17
6 7	5,17 β -Dihydroxy-19-nor-5 α ,17 α -pregn-20-yn-3-one 5,17 β -Dihydroxy-19-nor-5 β ,17 α -pregn-20-yn-3-one	17α-C=CH, 5α-OH 17α-C=CH, 5β-OH	19 19
Andro	ostanes		
8	5 _a -Androstane	5α-An	21
9	5α-Androstan-3-one	3-one	21
10	$\Delta \alpha$ -Androstan-11-one $\delta \alpha$ -Androstan-17-one	17-one	21
12	5_{α} -Androstan- 3_{α} -ol	3 α-0 1	21
13	5α-Androstan-3β-ol	3β-ol	21
14	3α -Chloro- 5α -androstane	3a-Cl	21
15	3α -Fluoro- 5α -androstan-17-one	3α -F-17-one	21
16	3β -Fluoro- 5α -androstan-17-one	3β-F-1/-one 3α-Cl-17-one	21
17	3α -Chloro- 5α -androstan-17-one 3B-Chloro- 5α -androstan-17-one	3β-Cl-17-one	21
19	3_{α} -Bromo- 5_{α} -androstan-17-one	3α -Br-17-one	21
20	3β-Bromo-5α-androstan-17-one	3β-Br-17-one	21
21	3α -Iodo- 5α -androstan-17-one	$3\alpha - 1 - 1$ /-one 38-1-17-one	21
22	$3p-1000-3\alpha$ -androstan-1/-one	56-117-0110	
23	Androst-5-en-17-one	Δ^{5} -17-one	21
24	Androst-4-en-3-one	Δ^{-3} -one Test (T)	
25 26	1/p-Hydroxyandrost-4-en-3-one (lestosterone)	2α -OHT	
27	28-Hydroxytestosterone	2β-OHT	
28	6α-Hydroxytestosterone	6α-OHT	
29	6β-Hydroxytestosterone	6β-ΟΗΤ	
30	7 _α -Hydroxytestosterone	$\frac{1}{\alpha}$ -OHI	
31	11α-Hydroxytestosterone	118-OHT	
33	14-Hydroxytestosterone	14-OHT	
34	15α-Hydroxytestosterone	15α-OHT	
35	16a-Hydroxytestosterone	16α-OHT	
36	16β-Hydroxytestosterone	16β-OH1 Λ ¹ Τ	11
3/	1/β-Hydroxyandrosta-1,4-dien-3-one (1-denydrotestosterone)	$\Delta -1$ Λ^{6} -T	11
39	Androst-4-ene-3.17-dione	3,17-Dione(A)	
40	2α-Hydroxyandrost-4-ene-3,17-dione	2α-OHA	
41	4-Hydroxyandrost-4-ene-3,17-dione	4-OHA	
42	6β-Hydroxyandrost-4-ene-3,17-dione	6р-ОНА 7.: ОНА	
43 44	/a-Hydroxyandrost-4-ene-3,1/-dione	78-OHA	
45	11a-Hydroxyandrost-4-ene-3,17-dione	11α-ΟΗΑ	
46	11β-Hydroxyandrost-4-ene-3,17-dione	11β-ΟΗΑ	
47	14-Hydroxyandrost-4-ene-3,17-dione	14-OHA	(12)
48	15α-Hydroxyandrost-4-ene-3,17-dione	15α-OHA 16π-OHA	(43)
49 50	19-Hydroxyandrost-4-ene-3,17-dione	19-OHA	
51	Androsta-1,4-diene-3,17-dione	Δ^{1} -A	
52	Androsta-4,6-diene-3,17-dione	Δ^6 -A	
53	Androsta-1,4,6-triene-3,17-dione	$\Delta^{1.6}$ -A	
54	17a-Oxa-D-homoandrost-4-ene-3,17-dione (testololactone)	T-lactone	
55	Methyl 6a-fluoro-11b-hydroxy-16a-methyl-3-oxoandrost-4-ene-1/b- carboxylate	Me 17-Carbox	21
56	17β-Hydroxyandrost-4-ene-3,16-dione	16-OxoT	
Preg	nanes		
57	Pregn-4-ene-3,20-dione (progesterone)	Prog (P)	
58	2α-Hydroxyprogesterone	2α-OHP 2β-OHP	
59 60	2p-riyatoxyprogesterone 4-Hydroxyprogesterone	4-OHP	
61	6α-Hydroxyprogesterone	6α-OHP	
62	6β-Hydroxyprogesterone	6β-ΟΗΡ	

		Abbreviations used in Tables 2 and 3	Reference or source *
Pregr	lanes		
63	7a-Hydroxyprogesterone	7 α-OHP	
64	7β-Hydroxyprogesterone	7β-ОНР	
65	9-Hydroxyprogesterone	9-OHP	
66	11α-Hydroxyprogesterone	11α-OHP	
67	11β-Hydroxyprogesterone	11β-ОНР	12
60 60	12a-Hydroxyprogesterone	12α -OHP	(46)
70	15-Hydroxyprogesterone	14-OHP 15 OHP	(44)
71	15B-Hydroxyprogesterone	158-OHP	(42)
72	16α-Hydroxyprogesterone	16g-OHP	(42)
73	17α-Hydroxyprogesterone	17α -OHP	
74	19-Hydroxyprogesterone	19-OHP	
75	21-Hydroxyprogesterone	21-OHP	
76	17α -Acetoxy- 6α -methylprogesterone	17α-OAc-6MeP	13
79	Pregna-4,0-diene-3,20-dione Pregna 1.4.6 triona 2.20 diana	Δ^{0} -P	
79	68 9 _m -Dihydroxynrogesterone		(12)
80	68.11 _a -Dihydroxyprogesterone	бр,9а-ОНГ 68 11а-ОНР	(43)
81	78,15B-Dihydroxyprogesterone	7B.15B-OHP	
82	12β,15α-Dihydroxyprogesterone	12β,15α-OHP	
83	16x,21-Dihydroxyprogesterone	16α,21-OHP	
84	6β,11β,21-Trihydroxyprogesterone	6β,11β,21-ОНР	
85	5α , 17α -Pregnan-20-one	5α , 17α -20-one	
80 97	10p-Hydroxy-5α-pregnan-20-one	16β-OH-20-one	(40)
0/ 88	2a, 5a-Dihydroxy-5a-pregnan-20-one	$2\alpha, 3\alpha$ -OH- 5α -20-one	(49)
89	$38 6\alpha$ -Dihydroxy- 5α -pregnan-20-one	3° , $^{\circ}$, $^{\circ$	
90	$3\beta,7\beta$ -Dihydroxy- 5α -pregnan-20-one	$3B.7B-OH-5\alpha-20-one$	
91	3β,12β-Dihydroxy-5α-pregnan-20-one	3β , 12β -OH- 5α -20-one	
92	3β,12β-Dihydroxy-5α-pregn-16-en-20-one 3-acetate	3β -OAc-12 β -OH- Δ^{16} -20-one	
93	3α,6α-Dihydroxy-5β-pregnan-20-one	3α,6α-OH-5β-20-one	
94	3β-Acetoxypregn-5-en-20-one	3β -Ac- Δ^5 -20-one	29
95 04	3β-Acetoxypregn-5-en-20β-ol	3β -Ac- Δ^3 -20 β -ol	29
90 07	3B-Hydroxypregna-5,20-diene	3p-OH-Δ.20 2B OH A5.16	29
98	16 ₇ 17-Enoxypregn-4-ene-3 20-dione	16 17-Epoxy-P	29
<u>99</u>	16α,17-Epoxypregn-4-ene-3,11.20-trione	16.17-Epoxy-11-oxoP	24 24ª
100	16α , 17-Epoxy-11 α -hydroxypregn-4-ene-3, 20-dione	16,17-Epoxy-11α-OHP	24 <i>ª</i>
101	11β,17α-Dihydroxypregn-4-ene-3,20-dione	11β,17α-OHP	24 <i>ª</i>
102	Pregn-4-ene-3,6,20-trione	6-OxoP	
103	17α-Hydroxypregn-4-ene-3,11,20-trione	17α -OH-11-oxoP	24 <i>ª</i>
104	(20S)-20-Hydroxypregn-4-en-3-one	$20S-OH-\Delta^4-3-one$	
105	(20R)-20-Hydroxypregn-4-en-3-one (20R)-0- 20 Dibydroxypregn 4 en 3 one	$20R-OH-\Delta^{-3}-3-one$	
100	17 _a 21-Dihydroxypregn-4-ene-3 11 20-trione (cortisone)	Sortisone	
108	Cortisone acetate	CortAc	24 <i>ª</i>
109	11β,17α,21-Trihydroxypregn-4-ene-3,20-dione (cortisol)	Cortisol	34 "
110	9a-Fluorocortisol	9α-F-cortisol	14
111	18-Hydroxycortisol	18-OH-cortisol	(61)
112	21-Acetoxy-11 β ,17 α -dihydroxypregna-1,4-diene-3,20-dione (prednisolone	— • • •	
112	acetate)	$\frac{Pred}{Ac} = \frac{A}{1620} = \frac{1620}{160} = \frac{1620}$	24 ^{<i>a</i>}
115	3p-Acetoxy-5a-pregn-10-en-20-one	$3\beta Ac A^{5.1620}$ one	24*
115	16° 17°-Epoxy-38-hydroxypregn-5-en-20-one	1617 -Epoxy-38-OH- Λ^{5} -20-one	24 24ª
116	118-Hydroxy-3-oxoestr-4-ene-178.18-carbolactone	18-OH-nor-lactone	26
117	11β-Hydroxy-3-oxoandrost-4-ene-17β,18-carbolactone	18-OH-lactone	26
118	16β-Bromo-17α-hydroxypregn-4-ene-3,11,20-trione	16β-Br-17α-OH-11-0x0P	24 <i>ª</i>
119	21-acetoxy-6α,9α-difluoro-11β,16α,17α-trihydroxypregna-1,4-diene-3,20- dione (fluocinonide)	Fluocinonide	28
A1.3	terms and designations		
AIDOS			0
120	Aldosterone (18,20-hemiacetal)	Aldo (H)	9
121	Aldosterone 18.21-diacetate	Aldo (UXO) Diac	
122	118.18-Epoxy-3-oxopregn-4-ene-178.18-carbolactone (aldosterone gamma-	Diac	
	lactone)	Lactone	

5α-DH (H)

123 11β,18; 18,20-Diepoxy-20,21-dihydroxy-5α-pregnan-3-one [5α-Dihy-droaldosterone (18,20-hemiacetal)]

		Abbreviations used in Tables 2 and 3	Reference or source*
Aldos	terone and derivatives ^c		
124	11β,18; 18,20-Diepoxy-5α-pregnane-3α,20,21-triol [3α,5α-Tetrahydroaldo-		
	sterone (18,20-hemiacetal)]	3α,5α-TH (H)	
125	6α-Hydroxyaldosterone (18,20-hemiacetal)	6α-OH (H)	(48)
	6α-Hydroxyaldosterone (20-oxo)	6α-OH (Oxo)	
126	6α-Hydroxyaldosterone 18,21-diacetate	6α-OH-diac	(48)
127	6α-Hydroxy-5α-dihydroaldosterone (18,20-hemiacetal)	6α-OH-5α-DH (H)	
	6α-Hydroxy-5α-dihydroaldosterone (20-oxo)	6α-OH-5α-DH (Oxo)	
128	6β-Hydroxyaldosterone (18,20-hemiacetal)	6β-ОН (ОН)	(48)
	6β-Hydroxyaldosterone (20-oxo)	6β-OH) (Oxo)	
129	6β-Hydroxyaldosterone 18,21-diacetate	6β-OH-diac	(48)
130	6β -Hydroxyaldosterone γ -lactone	6β-OH-lactone	(48)
131	6β-Hydroxy-5α-dihydroaldosterone (18,20-hemiacetal)	6β-OH-5α-DH) (H)	
	6β-Hydroxy-5α-dihydroaldosterone (20-oxo)	6β-OH-5α-DH (Oxo)	
132	11β,18-Epoxy-18,21-dihydroxy-17α-pregn-4-ene-3,20-dione (17-isoaldoster-		
	one)	17-Iso	
133	5α-Dihydro-17-isoaldosterone	5α-DH-iso	
134	2α-Hydroxy-3α,5α-tetrahydro-17-isoaldosterone	2a-OH-3a,5a-TH-iso	(49)
135	6α-Hydroxy-17-isoaldosterone	6α-OH-iso	(48)
136	6β-Hydroxy-17-isoaldosterone	6β-OH-iso	(48)
137	11β,18; 18,21-Diepoxy-20,21-dihydroxypregn-4-en-3-one (apoaldosterone)	Аро	
138	5α-Dihydro-apoaldosterone	5α-DH-apo	
139	2a-Hydroxy-3a,5a-tetrahydroapoaldosterone	2α-OH-3α,5α-TH-apo	(49)
140	19-Noraldosterone γ-lactone	19-Nor-lactone	26
Bile a	cids		
141	5β-Cholan-24-oic acid	5β-Cholanic	20
142	3α-Hydroxy-5β-cholan-24-oic acid (lithocholic acid)	Litho	20
143	3α , 7α -Dihydroxy-5 β -cholan-24-oic acid (chenodeoxycholic acid)	Cheno	20
144	$3\alpha,7\beta$ -Dihydroxy-5 β -cholan-24-oic acid (ursodeoxycholic acid)	Urso	20
145	3α , 12α -Dihydroxy-5 β -cholan-24-oic acid (deoxycholic acid)	Deoxy	20
146	Sodium deoxycholate	Na deoxy	27
147	3β,12α-Dihydroxy-5β-cholan-24-oic acid	3-Epideoxy	
148	3α , 7α , 12α -Trihydroxy-5 β -cholan-24-oic acid (cholic acid)	Cholic	20
149	Sodium cholate	Na cholate	27
150	Methyl 3-oxo-7α,12α-dihydroxy-5β-cholan-24-oate	3-Oxo-7a,12a-OH	
151	3-Oxochola-4,6-dien-24-oic acid	$\Delta^{4.6}$ -3-one	
Stero	ls and miscellaneous		
152	5α-Cholestane-3β,6β-diol	3β,6β-ОН-С	
153	6α-Hydroxy-5α-cholestan-3-one	6α-OH-3-one	
154	6β-Hydroxy-5α-cholestan-3-one	6β-OH-3-one	
155	5-Hydroxy-5a-cholestan-6-one oxime	5α-OH-6-NOH	32
156	3β-Acetoxy-5-hydroxy-5α-cholestan-6-one oxime	3β-AcO-5α-OH-6-NOH	32
157	3β -Acetoxy-5-methoxy-5 α -cholestan-6-one oxime	3β-AcO-5α-OMe-6-NOH	32
158	3β-Acetoxy-5-hydroxy-5β-cholestan-6-one oxime acetate	3β-AcO-5β-OH-6-NOAc	32
159	4,4-Dimethyl-5α-cholest-2-en-7-one	4,4-Me ₂ -2-en-7-one	34
160	3β-Hydroxy-4,4-dimethyl-5α-cholestan-7-one	3β -OH-4,4-Me ₂ -7-one	34
161	3β-Acetoxy-4,4-dimethyl-5α-cholestan-7-one	3β -OAc-4,4-Me ₂ -7-one	34
162	3β-Acetoxycholesta-5,7-diene (7-dehydrocholesteryl acetate)	Δ^7 -Chol ac	36
163	(22E)-3β-Acetoxyergosta-5,7,22-triene (ergosteryl acetate)	Ergo ac	36
164	(20E,23E,25E)-26-Phenyl-27-norcholesta-5,20(22),22,25-tetraen-3β-ol	$26-Ph-\Delta^{20(22),23,25}$	33
165	(20E,23E)-24-Phenyl-25,26,27-trinorcholesta-5,20(22),23-trien-3β-ol	$26-Ph-\Delta^{20(22),23}$	33
166	$(25R)$ -3 β -Acetoxy-5 α -spirostan-12-one (hecogenin acetate)	Hec Ac	

* Reference numbers in parentheses are to our own work. Where no source is indicated, materials were from the Steroid Reference Collection, or from unpublished work in our laboratories. ^a All δ values taken from ref. 24 have been increased by 0.13 ppm, by agreement with Prof. Dr. H. Duddeck (personal communication). ^b δ values in parentheses in Table 2 are in DMSO, from ref. 34. ^c Aldosterone-type compounds generally exist as equilibrating mixtures of the 18,20-hemiacetal form (abbreviated 'H') and the 20-oxo form (abbreviated 'oxo'), each exhibiting its own spectrum.

is then often close enough to those for 8β -H, 11α -H, and 11β -H for all these signals to show strong second-order effects. Accurate location of signals from these middle-ring protons without recourse to 13 C and heteronuclear correlated spectra is then a major problem, instead of being trivial as it normally is for 4-en-3-ones and 5α -steroids. COSYDEC spectra at 500 MHz have proved to be generally the most helpful proton technique in such cases, although even these may leave a margin

of uncertainty in chemical shifts which is somewhat greater than usual.

Superscripts and footnotes in Table 2 indicate the methods which were used to determine particular chemical shifts where these could not be read directly from 1D-spectra. Signal profiles normally corresponded quite closely to the templates illustrated

Table 2. Chemical shifts for protons [δ (ppm from Me₄Si)].

	1 17α-CH ₂ Cl	2 17α-CH ₂ N ₃	3 17α-CH ₂ CN	4 17α-C≡CH 5α-H	5 17α-C≡CH 5β-H	6 17α-C≡CH 5α-OH	7 17α-C≡CH 5β-OH
Solvent*	c	c	С	М	M	M	
н							
1α	1.53	1.53	1.52	1.33	1.69	1 72	2.08
1β	2.25	2.25	2.30	2.38	2.32	2.15	2.00
2α	2.22	2.23	2.25	2.39	2.44	2.37	2.40
2β	2.40	2.41	2.25	2.48	2.16	2.45	2.16
3α		-1000-100 ⁻¹					
3β							
4α	582	5.83	5 7 2	2.27	2.82	2.30	3.01
4β	f 5.02	5.05	5.72	2.27	2.07	2.59	2.08
5a				1.50			
5p	2.27	226			2.26		
οα 40	2.27	2.20	2.32	1.75	1.59	1.72	1.73
ор 7-	2.40	2.48	2.47	1.30	1.83	1.72	1.66
78	1.04	1.03	1.05	1.05	1.20	1.38	1.15
8	1.65	1.04	1.67	1.75	1.39	1.30	1.75
ğ	0.83	0.82	0.87	0.79	1.27	1.29	1.55
10	2.11	2.11	2.21	1 33	1.52	1.65	1.42
11a	1.88	1.87	1.91	1.96	1.91	1.86	197
11B	1.32	1.31	1.36	1.31	1.29	1.31	1.33
12a	1.28	1.24	1.27	1.84	1.93	1.86	1.91
12β	1.69	1.68	1.65	1.69	1.74	1.67	1.73
14	1.24	1.20	1.34	1.66	1.78	1.70	1.73
15α	1.64	1.61	1.69	1.74	1.76	1.74	1.73
15β	1.39	1.36	1.40	1.40	1.41	1.39	1.42
16α	1.75	1.72	1.93	2.28	2.29	2.29	2.30
16p	2.14	2.92	2.03	2.01	2.02	2.01	2.04
1/α				near set			_
1/p	1.01	0.00	0.00				
10	1.01	0.96	0.99	0.94	0.94	0.94	0.94
20							
20			Teacher 1	2.94	2.96	2 93	2.96
<u> </u>				2.94	2.70	2.93	2.90
Other	3.78, 3.61 (17a-CH ₂)	3.53, 3.20 (17α-CH ₂)	2.66 (17α-CH ₂)				

(b) Androstanes

	8 5a-An	9 3-one	10 11-one	11 17-one	12 37-01	13 36-ol	14 3a-Cl	15 3α-F- 17-one
Solvent	С	С	С	С	С	С	С	С
Н								
1 x	0.89	1.34	0.76	0.89	1.33	0.96	1.12	1.32
1β	1.66	2.01	2.40	1.67	1.48	1.73	1.89	1.53
2α	1.50	2.27	1.50	1.50	1.63	1.78	1.86	1.77
2β	1.41	2.37	1.41	1.41	1.68	1.40	1.86	1.56
3α	1.23		1.19	1.22		3.57		
3β	1.67		1.65	1.66	4.05			4.81
4α	1.22	2.06	1.23	1.29	1.38	1.53	1.59	1.63
4β	1.22	2.24	1.23	1.29	1.52	1.26	1.73	1.41
5α	1.06	- 1.51	0.99	1.07	1.56	1.10	1.70	1.57
5β								
6α	1.22	1.33	1.21	1.23	1.20	1.26	1.20	1.24
6β	1.22	1.33	1.21	1.25	1.20	1.26	1.20	1.16
7α	0.93	0.96	1.12	0.97	0.98	0.91	0.99	1.02
7β	1.69	1.73	1.79	1.78	1.70	1.67	1.70	1.81
8	1.29	1.34	1.65	1.55	1.30	1.27	1.29	1.56
9	0.69	0.76	1.69	0.72	0.79	0.66	1.75	0.82
10	Televiner 1		1000007	1000707				
11x	1.55	1.57		1.67	1.57	1.50	1.55	1.68
11B	1.26	1.39	10001007	1.27	1.28	1.28	1.25	1.29
12 ^a	1.10	1.12	2.25	1.23	1.11	1.09	1.12	1.24
128	1.71	1.73	2.25	1.79	1.72	1.71	1.71	1.80
14	0.90	0.92	1.54	1.27	0.92	0.89	0.92	1.30
15a	1.65	1.65	1.77	1.92	1.67	1.62	1.65	1.94
15β	1.15	1.16	1.23	1.50	1.15	1.14	1.15	1.51
16 ²	1.56	1.59	1.71	2.05	1.61	1.56	1.60	2.07
16β	1.56	1.59	1.71	2.45	1.61	1.56	1.60	2.42
17α [°]	1.13	1.13	1.35		1.14	1.13	1.14	
17β	1.42	1.40	1.45		1.43	1.41	1.43	
18	0.69	0.72	0.66	0.86	0.69	0.69	0.69	0.86
19	0.79	1.02	1.01	0.81	0.78	0.81	0.79	0.82
20		Transform 1		Transmitt.				
21				10010		—		
Other					—			

	16 3β-F- 17-one	17 3α-Cl- 17-one	18 3β-Cl- 17-one	19 3α-Br- 17-one	20 3β-Br- 17-one	21 3α-I- 17-one	22 3β-I- 17-one	23 Δ^{5} -17-one	24 ∆ ⁴ -3- one
Solvent	С	С	С	С	С	С	С	С	С
H 1α 1β 2α 2β 3α 3β 4α 4β 5α	0.98 1.77 1.93 1.57 4.46 	1.49 1.49 1.88 1.88 4.51 1.67 1.75 1.74	1.02 1.76 2.03 1.77 3.85 	1.54 1.54 1.95 1.95 4.73 1.72 1.72 1.72	1.05 1.73 2.15 1.97 4.02 1.87 1.87 1.19	1.53 1.53 1.93 1.70 4.94 1.77 1.50 1.75	1.05 1.58 2.14 2.25 4.15 	1.04 1.86 1.54 1.54 1.22 1.76 2.02 2.26	1.70* 2.03 2.31 2.44 5.73
5β 6α 6β 7α 7β 8 9 10	1.35 1.35 0.98 1.81 1.53 0.68	1.28 1.28 1.05 1.80 1.56 0.87	1.31 1.31 0.96 1.62 1.54 0.69	1.28 1.28 1.06 1.80 1.57 0.90	1.33 1.33 0.96 1.79 1.55 0.70	1.31 1.31 1.09 1.81 1.58 0.90	1.30 1.30 0.96 1.79 1.54 0.69	<pre>}5.31 1.67 2.10 1.65 1.07</pre>	2.26 2.41 [*] 1.04 1.87 1.48 [*] 0.95
11 π 11 π 11 β 12 π 12 β 14 15 π 16 π 16 π 16 π 16 π 17 π 18 19 20 21	1.65 1.32 1.23 1.78 1.27 1.92 1.48 2.06 2.42 	1.68 1.28 1.24 1.80 1.29 1.94 1.51 2.07 2.43 	1.62 1.30 1.22 1.79 1.24 1.91 1.49 2.05 2.43 	1.69 1.29 1.27 1.82 1.31 1.95 1.50 2.09 2.43 	1.62 1.32 1.23 1.80 1.25 1.92 1.50 2.07 2.43 	1.70 1.29 1.27 1.81 1.32 1.96 1.51 2.08 2.44 	1.60 1.30 1.21 1.79 1.25 1.91 1.49 2.06 2.42 	1.68 1.50 1.30 1.86 1.30 1.96 1.56 2.09 2.46 	1.57 ^h 1.43 1.14 ^h 1.77 ^h 0.92 1.69 ^h 1.21 1.63 ^{h,s} 1.63 ^{h,s} 1.63 ^{h,s} 1.7 ^h 1.44 ^h 0.75 1.19
Other							_	_	
	25 Test	26 2α-ОНТ	27 2β-ΟΗΤ	28 6α-C	онт	29 6β-ΟΗΤ	30 7α-OHT	31 11α-ΟΗΤ	32 11β-ΟΗΤ
Solvent H 1_{α} 1_{β} 2_{α} 2_{β} 3_{α} 3_{β} 4_{α} 4_{β} 5_{α}	C 1.70 2.03 2.35 2.42 	C 1.59° 2.38° 4.27 	C 2.49° 1.54° 4.19 5.81	C 1.76 2.05 2.38 2.44 		C 1.72 2.05° 2.40 2.53 	C 1.79 2.06 2.38 2.43 	C 2.01 2.66 2.33 2.43 c 	C 1.86 2.20 2.36 2.47
5 6α 6β 7α 7β 8 9	2.29 2.42 ^d 1.00 ^d 1.85 ^d 1.57 ^d 0.93	2.34 2.41 1.02° 1.86° 1.57° 0.95°	2.26 2.53 ^a 1.01 1.98 1.71 1.40	4.34 1.05 2.18 1.62 0.94	a a c	4.36 1.23 ^a 2.01 ^{c,s} 2.02 ^{c,s} 0.92	2.42 ^{a.d} 2.65 ^a 3.97 1.62 ^d 1.38 ^d	2.28 2.38° 1.04 1.83 1.60 1.10°	2.24 2.47° 1.03 2.00°.s 2.00°.s 0.98°
11α 11β 12α 12β 14 15α 16β 16β 17α 17β 18 19 20 21	1.60 ⁴ 1.43 1.10 1.86 ⁴ 0.98 ⁴ 1.62 ⁴ 1.31 2.09 ⁴ 1.48 ⁴ 3.65 	1.60 ° 1.44 1.08 1.87 ° 0.97 ° 1.62 ° 1.31 2.08 1.49 ° 3.65 0.80 1.31	1.80 1.53 ° 1.14 1.89 1.00 ° 1.59 ° 1.31 2.08 1.47 3.67 0.80 1.19	1.63 1.42 1.10 1.88 1.03 1.67 1.35 2.10 1.49 3.67 	с с с	1.54 c-3 1.50 c-3 1.10 1.88 0.99 1.63 c 1.37 2.10 1.49 c 3.67 0.83 1.40	1.66 ^d 1.47 ^d 1.10 1.85 1.36 ^{d,s} 1.72 1.36 ^{d,s} 2.14 1.50 ^d 3.71 0.81 1.21	4.05 1.17 ^{a.c} 2.14 ^a 1.09 ^c 1.60 ^c 1.29 ^c 2.10 ^c 1.48 ^c 3.70 0.82 1.32	4.40 1.38 1.98 ** 0.95 * 1.66 1.38 * 2.09 1.48 * 3.62 1.05 1.46
Other									

10/0

 Table 2 (continued)

	33 14-OHT	34 15α-OHT	35 16α-ΟΗΤ	36 16β-ΟΗΤ	37 Δ ¹ -Τ	38 Δ ⁶ -Τ	39 3,17-Dione (A)	40 2α-ΟΗΑ
Solvent	С	С	c	С	<u>с</u>	С	C	с
H 1_{α} 1_{β} 2_{α}	1.77 2.04	1.72 2.04	1.72 2.04	1.70 2.04	}7.07	1.72° 2.01	1.71 ° 2.03	1.59° 2.38°
2β	2.42 ^d	2.33	2.37	2.35 2.44	}6.23	2.43 2.57	2.35° 2.41°	4.27
4α 4β 5α	}5.74	5.72	5.74	5.74	6.08	5.63	5.76	5.82
5ρ 6α 6β	2.33 ^d 2.44 ^d	2.32 2.42°	2.30 2.41 °	2.29 2.42°	2.36	} 6.10	2.35°	2.38 ^{c.s}
7∝ 7β 8 9	1.40 ^d 1.74 ^d 1.89 ⁿ 1.50 ^d	1.21° 2.16° 1.80 0.99°	1.05 1.84 ° 1.57 ° 0.98	1.03 1.87 1.64° 0.95	1.01 1.96 1.67 1.04	$\left. \right\} 6.10$ 2.25° 1.20°	1.13 1.99° 1.75°	1.14 1.99° 1.75
10 11α 11β	1.70 ^d 1.39 ^{d,n}	1.63 1.43	1.60° 1.43	1.62° 1.46	1.77 1.68	1.63° 1.44	1.70° 1.47	1.69
12α 12β 14	1.72 ^{d.s} 1.74 ^{d.n.s}	1.18 1.84 1.00 ^{<i>a</i>,c}	1.19 1.83° 1.37	1.13 1.91 0.83	1.09 1.87 0.95	1.13° 1.90 1.18°	1.28 1.86 1.31°	1.28° 1.88 1.29°
15α 15β 16α 16β	1.51 ⁻ 1.78 ^{d.n} 2.29 ^d 1.58 ^d	4.13 1.97 ^{a.c} 2.11 ^{a.c}	1.62° 1.83° 	2.24 1.31 4.19	1.61 1.33 2.07 1.47	1.80° 1.47° 2.11° 1.51°	1.98° 1.59 ^b 2.12 ^b 2.48 ^b	1.98° 1.56° 2.12 ^b 2.48 ^b
17α 17β 18	4.32	3.92 0.82	3.52 ª 	3.40 0.87	3.64	3.68 0.86		0.92
19 20 21	1.22	1.22	1.19	1.21	1.24	1.14	1.22	1.33
Other								
	41 4-OHA	42 6β-ΟΗΑ	43 7α-ΟΗΑ	44 7β-ΟΗΑ	45 11α-OHA	46 11β-ΟΗΑ	4 7 14-OHA	48 15α-OHA
Solvent H	С	С	С	С	С	С	С	С
1α 1β 2α 2θ	1.71 ° 2.02 ° 2.52 °.5	1.73 2.06 2.41	1.79° 2.06° 2.37	1.65 2.04 2.34°	2.04 2.68 2.35°	1.86 2.22° 2.37	1.77 2.05 2.33 °	1.73 2.05 2.35°
2ρ 4α 4β 5α	}6.10 (OH)	5.84 °	5.81	5.75	5.76	5.71	5.75	5.75
5β 6α 6β	3.07 2.03°	4.41	2.47° 2.68°	2.55° 2.49°	2.35° 2.42°	2.30 ⁿ 2.48 ^{c.n}	2.38 c.n 2.47 c.n	 2.35° 2.43°
7α 7β 8 9	1.08 1.99° 1.70° 1.00	2.14° 2.18 0.98	4.11 1.81° 1.29	5.36 	1.16 1.98° 1.72 1.18″	1.14 2.12 2.20 ^{c.n} 1.01 ^a	1.43° 1.86° 1.94 ^{a.c.n} 1.53°	1.35° 2.35° 1.96 1.03
$\frac{10}{11\alpha}$ $\frac{11\beta}{12\alpha}$	1.70° 1.43 1.28	1.70° 1.52 1.27°	1.74 ° 1.47 1.23	1.72° 1.48° 1.24	4.08 1.34 <i>°</i>	4.47 1.50 <i>ª</i>	1.66 1.43 ^{c.n} 1.82	1.71° 1.44° 1.40°
12β 14 15α 158	1.87 1.28° 2.02° 1.57 ^b	1.89 ^a 1.31 ^c 1.99	1.84 1.74° 2.11	1.85 1.46° 2.30°	2.17° 1.41 1.98°	1.97 ^{<i>a.n</i>} 1.25 2.00 ^{<i>c</i>}	1.60 ^{c.n} 1.97 ^{c.s} 1.97 ^{c.n.s}	1.80 1.35 ^{a,c}
16α 16β 17α	2.12 ^b 2.49 ^b	2.15 ^b 2.49°	2.14 ^b 2.48 ^c	2.10 ^b 2.45 ^c	2.15° 2.50	2.08 ^b 2.52 ^{c.n}	2.37 c.s 2.45 c.n.s	2.13 ^a 3.02 ^a
17β 18 19 20	0.93 1.21	0.96 1.42	0.93 1.22	0.93 1.22	0.96 1.34	1.17 1.48	1.05 1.23	0.97 1.23
21							1444947	
Other				_				

	49 16α-ΟΗΑ	50 19-0ha	51 Δ¹-Α	52 Δ ⁶ -Α	53 Δ ^{1.6} -Α	54 T-Lactone	55 Me 17-Carbox	56 16-OxoT
Solvent	С	С	С	С	C	С	С	С
н								
1x	1.71 °	1.73	2707	1.75°	27.08	1.74	1.95	1.73
16	2.03	2.35°	1.07	2.03	۲.00 ۲.00	2.07 ^a	2.20	2.06
2α	2.33	2.28	1 4 22	2.47	16.284	2.30 ^a	2.40	2.35°
2β	2.42 °	2.68 "	50.23	2.58	ر ک	2.43	2.47	2.40*
4α	2 6 76	597	- 6.08	5 72	6.05	5.76	6.02	5.76
4β	5.75	5.87	0.08	5.72	0.05	5.70	0.02	5.70
5a	·		1948-1977	100707		-		
5β								
6α	2.39°	2.35°	2.30	2621	6 324	2.34 ^a	name:	2.32
6B	2.41 °	2.47	2.47°	50.21	0.52	2.40	5.20	2.43°
7.	1.11	1.05	1.12°	1 6 21	6119	1.11	1.33	1.16°
76	1.92°	1.98 °	2.08 °	0.21	0.11	2.05 4	2.39	1.83
8	1.72 °	1.83°	1.83 °	2.39	2.46	1.41	2.04	1.74°
ğ	099 4	1.11	1.10°	1.27°	1.34°	1.17 4	1.06	1.14°
10								
11~	1716	1.77 °	1.88°	1.72°	1.94 c.s	1.82	4.39	1.72°
11 R	1 45	1.50 °	1.70	1.47°	1.67	1.34		1.50°
12~	1 384	1 194	1.28	1.33	1.33°	1.68	1.56	1.46
128	1.85	1954	1964	1.91	1.94 c.s	2.01 ^d	2.13	2.05°
14	1.53	1 234	1 284	1 51 9	1.52	1.44^{d}	1.28	1.53°
15	20263	1944	1 984	217	2 14 c.s	2.01 4	1.35	2.38°
150	1 95 4.5	1.54	1.50	1 74 4	1 74	1574	1.74	1.89*
16	1.95	2.06	2 11 9	217	2 14 4.5	2 59		
160	4 20	2.00	2.11	2.17	2.14	2.70	2.65	
17.	4.37	2.73	2.47	2.54	2.00		1.89	3 78 4
170					_		1.05	
1/p	1.00	0.00	0.02	0.08	1.01	1 36	0.98	0.78
18	1.00	2.90 4.024	1.25	0.56	1.01	1.50	1 43	1 23
19	1.20	3.88, 4.02	1.23	1.10	1.25	1.18	1.45	1.25
20		-	To and the second se					
21								
Other						_	3.70 (CO ₂ CH ₃) 1.04 (16α-CH ₃)	

(c) Pregnanes

	57 Prog	58 2∝-OHP	59 2β-ΟΗΡ	60 4-OHP	61 6х-ОНР	62 6β-ΟΗΡ	63 7х-ОНР	64 7β-ΟΗΡ	65 9-OHP
Solvent	С	С	C	С	С	С	С	C	С
н									
1.	1 72 4	1 58 ^d	2.49	1.69	1.77	1.72	1.80°	1.69°	2.42°
iĝ	2 04	2 374	1.56°	2.02	2.05	2.05	2.07	2.05	1.72 "
27	2.35	2.57	4 20	2.51 ***	2.37	2.40	2.39	2.36	2.32
28	2.53	4 27		2 53	2 44	2.53	2.44	2.44	2.43
37	2.40								
38			Towner .		-		_	_	_
4~)					*			6 00
48	≥5.73	5.80	5.82	6.09 (OH)	6.20	5.83"	5.82	5.78	5.88
50) 								
5Å								1000707	
6~	2 29	2 334	2.26	3.01 *	and the second se	4.36	2.43°	2.55	2.31 "
68	2.40	2 394	2.54 °	1.98	4.34		2.65*	2.44 °	2.47"
7~	1.06	1.08	1.06	1.01	1.11*	1.28"		3.47	1.46
78	1.87	1.89	200	1.87	2.194	2.02	4.00		1.65
8	1 57	1 594	1.68 °	1.51	1.63	1.99 ***	1.60°	1.60°	1.94"
ğ	0.99	1.00	1.45	0.99 °	0.99	0.97	1.47	1.00	
10	_								
117	1.65	1.654	1.82	1.65°	1.65°	1.63°	1.69°	1.68°	1.77 c.m.s
11 B	1 46 ^{c.s}	1 45 ^{d,s}	1.49	1.44 c.s	1.46 ^{c.s}	1.53	1.47 ^{c,s}	1.48 *	1.79 ^{c.n.s}
12α	1.46 ^{c,s}	1.45 ^{d.s}	ca. 1.50°.s	1.44 c.s	1.45 ^{c.s}	1.45	1.47 ^{c.s}	1.44 c.s	1.75"
128	2.08	2.08	2.10	2.07	2.08	2.09	2.06°	2.09 °	1.88"
14	1.18	1.18 ^d	1.19 ***	1.16°	1.22	1.17	1.56	1.32	1.68 c.s
15a	1.72 ^{c.s}	1.70 ^{d.s}	1.67	1.75	1.75 ^{c.s}	1.72	1.83	2.01 °	1.66 ^{c.s}
158	1.27	1.27 4	1.25 ^{c,s}	1.27	1.30	1.33	1.30	1.66	1.25"
16a	1.68 ^{c,s}	1.70 ^{d.s}	1.67 c.s	1.69°	1.72 ^{c.s}	1.72 c.s	1.74°	1.74°	1.68
16B	2.19	2.20	2.19	2.19	2.20°	2.19 °	2.22	2.21 °	2.19"
17x	2.54	2.54	2.54 °	2.50	2.54	2.54	2.59	2.49	2.61
176									
18	0.67	0.68	0.67	0.66	0.65	0.70	0.68	0.71	0.68
19	1.20	1.30	1.18	1.18	1.20	1.40	1.20	1.23	1.33
20									_
21	2.13	2.13	2.13	2.12	2.12	2.14	2.14	2.14	2.13
Other		—	3.48 (OH)						

 Table 2 (continued)

	66 11α-ΟΗΡ	67 11β-ΟΗΡ	68 12α-OHP	69 14-OHP	70 15α-ΟΗΡ	71 15β-ΟΗΡ	72 16α-ΟΗΡ	73 17α-OHP
Solvent	C(M)	C(M)	С	С	С	С	С	С
H 1α 1β 2α 2β 3α 3β	2.02 (2.03) 2.67 (2.70) 2.34 (2.34) ^c 2.44 (2.47)	1.84 (1.88) 2.18 (2.17) 2.35 (2.31) 2.47 (2.50)	1.72° 1.99 2.29 2.42	1.78 ^c 2.04 ^{c,n} 2.35 2.44	1.73 2.05 2.31 2.43	1.72 2.05 2.32 2.45°	1.72 2.03 ° 2.35 ° 2.41	1.71° 2.03 2.30 2.40
5ρ 4α 4β 5α 5β	}5.74 (5.71)	5.67 (5.67)	5.75	5.75	5.75	5.74	5.75	5.74
6β 7α 7β 8 9 10	2.27 (2.46)° 1.10 (1.09) 1.85 (1.89) 1.52 (1.62) 1.16 (1.17)°	2.23 (2.25) 2.48 (2.50) 1.06 (1.08) 2.00 (2.03) ^s 1.98 (2.01) ^s 1.00 (1.04)	2.35 ^{c.s} 2.37 ^{c.s} 1.11 1.87 1.58 1.37	2.30" 2.46" 1.45 1.74 ^c 1.91 ^{a.c.n} 1.46 ^c	2.35 ⁴³ 2.41 ^{4,3} 1.26 ⁴ 2.18 1.77 1.04	2.32° 2.48° 1.15 2.15° 1.97 1.05°	2.30° 2.39° 1.10 1.83 1.54 1.06	2.36 ^{<i>d.s</i>} 2.40 ^{<i>d.s</i>} 1.12 1.87 ^{<i>d</i>} 1.60 ^{<i>d</i>} 0.99
11α 11β 12α 12β 14 15α 15β 16α 16β 17α 17B	4.04 (3.97) 1.52 (1.54) ^a 2.33 (2.29) ^c 1.25 (ca. 1.3) ^{c,s} 1.25 (1.26) ^{c,s} 1.25 (1.26) ^{c,s} 1.72 (1.71) ^{c,s} 2.18 (2.15) ^c 2.57 (2.67)	4.40 (4.36) 	1.73 c.s 1.73 c.s 4.07 1.64 c 1.78 c.s 1.31 1.78 c.s 2.12 3.10	1.61 ° 1.48 °.n 2.05 ° 1.74 ° 	1.64° 1.45 1.56° 2.02° 1.20° 4.12 1.56° 2.79°. ³ 2.81°. ³	1.66 ^c 1.47 ^{c,s} 1.47 ^{c,s} 2.07 ^c 1.07 ^c 4.33 	1.65° 1.44 1.58° 2.03 1.64°. ^s 1.62°. ^s 1.77°.c 4.86 2.54°	1.67 ^{4.s} 1.44 ⁴ 1.70 ^{4.h.s} 1.44 ^{4.h.s} 1.73 ⁴ 1.85 ⁴ 1.37 ⁴ 1.60 ⁴ 2.69
18 19	0.71 (0.71) 1.33 (1.35)	0.90 (0.87) 1.44 (1.47)	0.72 1.18	0.80 1.22	0.70 1.20	0.94 1.22	0.68 1.19	0.77 1.19
20 21	2.14 (2.16)	2.11 (2.12)	2.16	2.13	2.15	2.15	2.18	2.28
Other	·····							
	7 4 19-OHP	75 21-OHP	76 17α-OAc 6-Me-P	77 ∆ ⁶ -P	78 Δ ^{1.6} -Ρ	79 6β,9α-OHP	80 6β,11α-ΟΗΡ	81 7β,15β-ОНР
Solvent	С	С	С(В)	С	С	C	М	С
$ \begin{array}{c} 1 \\ 1 \\ \alpha \\ 1 \\ \beta \\ 2 \\ \alpha \\ 2 \\ \beta \\ 3 \\ \alpha \\ 2 \\ 0 \end{array} $	1.80 2.42° 2.35° 2.75°	1.71 2.04 2.27° 2.40°	1.70 (1.27) 1.03 (1.50) 2.35 (2.27) 2.43 (2.17)	1.74 2.02 2.45 2.59	<pre>}7.06 " }6.25 "</pre>	2.44 1.71° 2.35 2.59	1.91 2.81 2.27 2.58*	1.68 2.07° 2.35 2.42
5ρ 4α 4β 5α 5β	}5.97 	5.72	5.80 (5.91)	5.69	6.01	5.84 "	5.86 "	5.79
6α 6β 7α 7β 8 9	2.40 ^{c.3} 2.42 ^{c.3} 1.11 ^c 1.92 1.65 1.10	2.29° 2.40° 1.09 1.87 1.61° 0.98	2.42 (1.82) 0.88 (0.40) 1.85 (1.34) 1.69 (1.14) 1.01 (0.53)	<pre>}6.12" }6.12" 2.23" 1.27</pre>	6.26 ^{c.s} 6.23 ^{c.s} 2.29 1.48 ^c	4.23 1.81° 1.63° 2.28°	4.25 1.31° 1.95° 2.03 1.11	2.55 ^s 2.55 ^s 3.65 2.04 1.06
11α 11β 12β 12β 14 15α 15β 16α 16β 17α	1.75 1.49 1.40 2.06 1.16 1.67 ^{e.s} 1.27 1.69 ^{e.s} 2.18 2.53	1.62 ^{c.3} 1.43 ^c 1.62 ^{c.3} 1.92 ^c 1.19 ^c 1.77 ^c 1.33 ^c 1.69 ^c 2.21 2.48	1.67 (1.22) 1.42 (0.98) 1.95 (1.75) 1.56 (1.29) 1.65 (1.47) 1.65 (1.40) 1.29 (1.01) 1.65 (1.88) 2.93 (3.17)	1.67 1.47 ^{c,s} 1.49 ^{c,s} 2.10 ^c 1.38 ^{c,s} 1.90 1.40 ^{c,s} 1.73 ^c 2.25 ^c 2.58	1.88 ^c 1.68 ^c 1.49 ^c 2.14 ^c 1.42 ^{c,s} 1.90 ^c 1.41 ^{c,s} 1.74 ^c 2.24 ^c 2.57	1.60° 1.84° 5 1.80° 5 2.30° 1.80° 1.70° 5 1.29 1.70° 5 2.16° 2.69	4.01 1.54 a 2.30 a 1.33 c - s 1.30 c - s 2.69	1.71° 1.50 1.40 2.07° 1.19° 4.48
17β 18 19	0.66 3.91, 4.06	0.70 1.19	0.67 (0.53) 1.18 (0.67)	0.72 1.15	0.75 1.21	0.68 1.48	0.70 1.50	0.97 1.26
20 21	2.10	4.17, 4.23	2.03 (1.92)	2.14	2.14	2.13	2.14	2.16
Other			2.09 (1.64) (OCOCH ₃) 1.07 (0.76) (6α-CH ₃)					

 Table 2 (continued)

	82 12β,15α- ΟΗΡ	83 16α,21- ΟΗΡ	84 6β,11β,21- ОНР	85 5α,17α- 20-one	86 16β-OH- 20-one	87 2α,3α-OH 5α-20-one	- 3α,6β-OH- 5α-20-one	89 3β,6α-OH- 5α-20-one	90 3β,7β-OH- 5α-20-one
Solvent	c	С	М	С	С	С	С	С	С
H 1α 1β 2α 2β 3α 3β 4α 4β	1.71 ° 2.08 ° 2.35 ° 2.58 ° 	1.71 2.07 2.30 2.42° 	1.84 2.25° 2.33° 2.61° 5.74	0.89 1.70° 1.52° 1.46° 1.29° 1.70° 1.27°- ⁵ 1.27°- ⁵	0.89° 1.68° 1.46°.3 1.46°.3 1.23°.3 1.68° 1.23°.3 1.23°.3	1.30 1.64 3.67 ^a 	1.36 ^{e.s} 1.42 ^{e.s} 1.61 ^e 1.73 ^e 4.18 1.42 ^e 1.98	0.99° 1.66°.s 1.71°.s 1.36° 3.42 	0.96 1.72 1.82° 1.40° 3.60
5α 5β 6α 7α 7β 8 9	2.35° 2.41° 1.22° 2.17° 1.68" 1.08	2.35° 2.40° 1.11° 1.84° 1.56° 1.03°	4.25 1.30 ^a 2.12 ^c 2.29 ^c 0.99 ^a	1.03° 	1.03 ^c 1.23 ^{c.s} 1.23 ^{c.s} 0.90 ^c 1.68 ^c 1.46 ^c 0.72	1.52°*3 1.27° 1.19° 0.97 1.71° 1.39° 0.84°	1.67° 3.76 1.22° 1.82 1.75° 0.85	0.94° 	1.18° 1.61° 1.34° 3.37 1.40° 0.73
10 11 α 11 β 12 α 12 β 14 15 α 15 β 16 α 16 β 17 α 17 β 18	1.84 1.38 3.55 1.07 ^c 4.25 1.95 ^c 2.60 ^c 2.73	1.62 ° 1.43 ° 1.46 ° 1.89 ° 1.11 ° 1.84 °.3 ° 1.84 °.3 ° 4.91 ° 2.49 °	4.34 1.58 ° 2.12 ° 1.20 1.81 1.40 1.69 2.20 2.53 0.91		1.63 ° 1.35 ° 4 1.35 ° 4 1.99 1.01 2.25 ° 1.32 ° 4.55 2.30 0.93	1.67° 1.33° 1.46 2.04 1.22°-s 1.67°-s 1.20°-s 1.64°-s 2.11° 2.63	1.64° 1.35° 1.42° 2.03 ca. 1.17° 1.67° d 1.25° 1.65° ds 2.16 2.54 	1.58 ° 1.28 1.39 1.97 1.20 ° - 3 1.64 ° - 3 1.64 ° - 3 1.61 ° - 3 2.05 ° 2.58 °	1.65 ° 1.36 °-s 1.40 °-s 2.02 1.30 °-s 1.93 1.30 °-s 1.70 ° 2.18 ° 2.48
19 20	1.20	1.18	1.62	0.82	0.80	0.83	1.01	0.78	0.83
21	2.14	4.27	4.15, 4.20	2.13	2.20	2.11	2.12	2.04	2.13
Other		3.25 (OH)	-100-10-						
	91 3β,12β-OH- 5α-20-one	92 3β-OAc-3 Δ ¹⁶ -20-01	93 12β-OH 3α,6α-OH ne 5β-20-one	94 3β-Ac-Δ ⁵ 20-one	95 3β-Α 20 <i>R</i> -	ac-∆⁵- -ol	96 3β-OH-Δ ^{5.20}	97 3β-OH-Δ ^{5,16}	98 16,17-epoxy-P
Solvent	С	С	С	С	С		С	С	c
H 1α 1β 2α 2β 3α 3β 4α 4α	0.98 1.73 1.80 ^c 1.39 ^c 3.59 	1.04 1.79 ^{c,s} 1.82 ^{c,s} 1.50 ^c 4.68	1.80 1.08 °.n 1.35 ° 1.72 ° 	1.16 1.88 1.58 1.86 4.60 2.33	1.15 1.86 1.60 1.83 4.62 		1.07 1.84 1.53 1.83 3.53 	1.08 1.84 1.55 1.82 3.53 	1.76 2.06 2.43 2.43 — 5.77
4p 5α 5β 6α 6β 7α 7β 8 9	1.28 c.s 1.28 c.s 1.28 c.s 0.87 1.68 1.30 c 0.73	1.30 1.20° 1.28°.3 1.28°.3 0.96° 1.73° 1.51° 0.83	1.92 * 1.63 c.n 4.07 1.19 1.68 c 1.46 ^{n.s} c.a. 1.45 ^{c.s}	$\left.\begin{array}{c} 2.33 \\ - \\ 5.37 \\ 1.63 \\ 1.96 \\ 1.47 \\ 1.03 \end{array}\right.$	2.33 		5.36 1.62 1.96 1.44 0.94	5.36 1.55 2.00 1.49 0.98	2.34 2.46 1.11 1.83 1.70 1.01
10 11α 11β 12α 12β 14 15α 15β 16α 16β 17α	1.80° 1.26° 3.42 1.01° 1.78° 1.37° 1.97 2.16 2.42	1.89 1.36° 3.65 1.40° 2.38° 2.17" } 6.97	1.52 cs 1.22 c 1.42 c 2.03 ca. 1.27 cs 1.69 cs 1.69 cs 2.18 2.55	1.61' 1.39' 1.45 2.07 1.16 1.72' 1.29' 1.68 2.20 2.52	1.49 1.49 1.23 2.04 0.97 1.62 1.13 1.13 1.62 1.35	, ,	1.56' 1.37' 1.65 1.88 1.01 1.65' 1.17' 1.52 1.75 1.75 1.95	1.62' 1.46' 1.22 1.80 1.00 1.70 1.70 1.70	1.69 1.53 1.46 2.10 1.22 2.05 1.41 3.76
17β 18 19	0.71 0.81	0.87 0.87	0.60 0.92	0.64 1.03	0.77 1.03		0.61	0.76 1.03	1.13 1.25
20 21	2.20	2.37	2.12	2.13	3.73 1.14		5.76 4.96	2.25	2.08
Other		2.02 (OCOCH	H ₃)						

	99 16,17-Epoxy- 11-oxoP	100 16,17-Epoxy- OHP	101 11α- 11β,17α-OHP	102 6-Oxo	ρP	103 17α- οχο	ОН-11- Р	104 20 <i>S</i> -OH-∆ ⁴ - 3-one	105 20 <i>R</i> -OH-∆ ⁴ - 3-one	106 $9\alpha,20R$ -OH- Δ^4 -3-one
Solvent	c	c	C	С		С		С	c	С
H 1a	2.50	211	1 99	1914		2 54		1 70	1 70	7 42 6.5
īβ	2.33	2.66	2.28	2.16°		2.36		2.02	2.03	1.70°
2α	2.83	2.38	2.46	2.45		2.83		2.34	2.34	2.40 ^{c.s}
2p 3α	1.00	2.4 /	2.55	2.52		1.71		2.42	2.42	2.45 ^{c.s}
3β									_	
4x 18	} 5.75	5.79	5.78	6.16		5.80		5.73	5.72	5.86
+p 5α) 							neerer -		_
5β									_	_
6α 6β	2.33	2.38	2.35			2.36		2.28°	2.27	2.30
7α.	1.30	1.18	1.24	2.06*		1.38		1.05	2.40 1.04°	2.45°
7β	1.96	1.84	2.12	2.68 <i>ª</i>		2.05		1.85	1.84	1.61 °
8 9	1.99	1.71	2.12	1.92°		2.00		1.55 ***	1.56°	1.94
10			1.15							_
11a		4.12	4.57	1.73				1.54°	1.52°	1.76 ^{c.s}
11p 12α	2.49	4.13	1.62	1.50 %	5	2.91		1.42" 1.17°	1.45 1.24°	1.79
12β	2.76	2.47	2.13	2.13		2.17		1.91 ^{c,n}	2.13	1.99°
14	1.81	1.35	1.81	1.31 **	5	2.47		1.05°	1.04°	1.51 ^{c.s}
15B	1.53	1.41	1.56	1.27	5	1.53		1.18 ^{c,n}	1.17 ^{c.s}	1.17 ^{c.s}
16a			1.70	1.72 ۰.	5	1.81		1.59°	1.17 ^{c,s}	1.19 *. *
16β 17~	3.89	3.80	1.81	2.19		2.83		1.91°	1.67 ^{c.s}	1.70°
17β			"man ter"							1.40
18	1.06	1.16	1.12	0.67		0.78		0.70	0.80	0.81
20	1.44	1.38	1.54	1.16		1.48		1.19	1.19	1.33
21	2.06	2.09	2.39	2.13		2.32		1.22	1.15	1.16
Other		1.9 (OH)	1.10 (OH)			3.48 (OH	[)		<u> </u>	
	107 Cortisone	108 Cort-Ac	109 Cortisol		110 9α-F- Cortisol		111 18-OH	112 Pred-Ac 20-one	114 3β-Ac- Δ^{16} - 20-one	115 3β-Ac-Δ ^{5.16} -
Solvent	М	С	M (D)		С		M	C/P	С	С
н										
1α 10	1.72°	2.56	1.88 (1.78)		1.40		1.84	} 7.42	1.06	1.21
$\frac{1}{2\alpha}$	2.70	2.83	2.22 (2.08) 2.31 (2.18)		2.22		2.18° 2.33°	1.00	1.77	1.95
2β	2.51 °	1.72	2.49 (2.38)		2.42		2.48°	}6.28	1.60	1.66
3α 3β	Transform								4.72	4.68
4α	\ 577	5.91	5 65 (5 56)		5.67		5.67	6.02	1.63	2.42
4β	5.12	5.81	5.05 (5.50)		5.07		5.07	0.03	1.44	2.42
5α 5β									1.24	_
6α	2.33	2.36	2.27° (2.18)		2.24		2.26°	2.36	1.35	547
6β 7	2.53°	2.54	2.56" (2.45)		2.56		2.55°	2.61	1.35	175
7β	2.03 c.s	2.06	2.04 ^{c.s} (1.87)		1.97		2.11°	2.12	1.73	2.10
8	2.01 ^{c,s}	2.03	2.06 ^{c,s} (1.86)		2.29		2.00	2.14	1.63	1.77
10	2.11-	2.03	0.99" (0.85)				0.99*	1.07	0.77	1.12
11x			4.40 (4.25)		4.13		4.40	4.47	1.63	1.66
11B		2.00	2 0 2 4 5 (1 9 2)		1 45		1.624	1 77	1.44	1.66
12α 12B	2.96*	2.36	1.61° (1.53)		2.15		2.15°	2.05	2.39	2.48
14	2.45°	2.49	1.76 ^{c.s} (1.65)		2.11		1.29 c.s	1.73	1.46	1.51
15a	1.92	2.03	$1.79^{\circ,s}$ (1.65)		1.62		1.73	1.81	2.33	2.38
15p 16a	1.69°	1.78 ***	1.48 ^{c.s} (1.40)		1.27		1.23 1.40°	1.47	2.04	2.14
16β	2.73°	2.83	2.72 (2.56)		2.58		2.08 °	2.61	} ^{0.74}	0.80
17α 17β										
18	0.61	0.74	0.88 (0.75)		0.75		4.32, 3.77	0.94	0.92	1.01
19	1.43	1.49	1.47 (1.36)		1.48		1.45	1.5	0.90	1.00
20	4.22, 4.58	5.19, 4.78	4.62, 4.26 (4.50, 4.07	')	4.10, 4.52		3.70, 3.65	4.98, 4.95	2.30	2.35
Other		3.70 (OH) 2.25 (OCOCH ₃)	(4.29, 11β-OH); (5.19, 17α-OH)					3.46 (OH) 2.21 (OCOCH ₃)	2.06 (OCOCH ₃)	2.11 (OCOCH ₃)

	115 16,17-epoxy-3β-OH-Δ ⁵ - 20-one	116 18-OH-nor lactone	117 18-OH lactone	118 16β- B r-17α-OH-11-0x0P	119 Fluocinonide
Solvent	С	В	В	С	D
н					
1.	1.15	1.17	1.44	2.48	2724
1 R	191	1.75	1.64	2.36	7.24
2~	191	245	2.43	2.79) ()7
20	1.51	216	2 4 3	1.67	\$0.27
2p 3	2.60	2.10			
3a 20	5.00				
sp	1.01	2			
4α 40	1.91	≻6.07	5.92	5.76	6.11
4p	2.36	J			
5α	head and	Sector 1			
5β	-				
6α	2542	2.07	1.84	2.33	5.50
6β	55.42	1.80	2.03	2.52	5.58
7α	2.31	0.68	0.61	1.33	1.46
7β	2.01	1.43	1.47	1.96	2.25
8	1.65	1.07	1.40	2.11	2.58
9	1.05	0.38	0.39	1.98	
10		2.21			
117	1.66	3.45	3.60		4.20
118	166		_		New York
12~	1.50	0.79	0.77	2.61	2.04
128	1.50	1 79	1 58	2.38	1.71
120	1.00	0.63	0.58	2 37	2.00
14	2.04	1 2 2	1 35	2.87	1 59
150	2.04	1.52	1.02	1 99	1 54
15p	1.41	1.03	1.02	4.14	1.54
100	2.7(1.79	1.77	4.14	4 87
100	3.76	1.91	1.93		4.87
1/α		2.19	2.21		
17B				1.21	0.01
18	1.14	4.83, 3.76	4.86, 3.76	1.31	0.81
19	1.11		1.13	1.47	1.47
20					
21	2.12			2.35	5.11, 4.73
Other				3.12 (OH)	2.09 (OCOCH ₃) 1.12, 1.33 [C(CH ₃) ₂]

(d) Aldosterone and derivatives (H	, 18,20-hemiacetal; oxo, 20-oxo form)
------------------------------------	---------------------------------------

	120 Aldo		121 Diac	122 Lactone	123 5α-DH	124 3¤,5¤-TH (H)	125 6α-OH	
	(H)	(oxo)			(н)	(п)	(H)	(oxo)
Solvent	М	М	С	С	М	М	М	М
Н								
1 x	1.74	1.72	1.68	1.73	1.38°	1.35°	1.60°	1.60°
1β	2.22	2.20	2.13	2.22	2.17°	1.59 ^{c.s}	2.18	2.18
2a	2.36	2.36	2.36°	2.30°	2.24	1.62 ^{c.s}	2.30°	2.30°
2β	2.55	2.55	2.49	2.53	2.56°	1.72°	2.54	2.54
3a		-		And and a second se				
3β	、					3.96	`	
4 α	571	5 71	5 74	5 69	1.98°	1.34°	6.16	6.16
4β	<i>f s.</i> , r	5.71	5.7 1	0.05	1.31*	1.49	<u>}</u>	
5a				Transform	1.52*	1.60*		(and the second s
Sβ	-				1 20(3	1.2665		
0α (0	2.36	2.36	2.28	2.30	1.38***	1.20***	4.24	4.24
ēβ	2.55	2.55	2.43	2.44	1.38	1.20	4.34	4.34
/2	1.26	1.18	1.15	1.28	1.18	1.19*	1.23	1.23*
/p	2.06	1.98	1.98	2.03	1.90*	1.87	2.27	2.27
8	1.82	1.75	1.82	1.70	1.00*	1.52	1.90	1.77*
9	1.15	1.07	1.04 -	1.17-	0.97	0.90	1.14	1.00
10	4.91	156	1659	1 9 9 4	4.91	4.80	4 70	4.54
110	4.01	4.30	4.05	4.00	4.01	4.00	4./9	4.34
11p	1.40	1.60	1634	1.614	1.46	1.450	1.48	1 59
122	236	2.67	2674	2 274	2 2 2 2	2.74	236	2.67
12p	2.50	1.56	1.58	1.769	1.54 4	1.48	1.63	1 53 4.5
15~	1.04	1.50	1 994	2.18	1.54	1.40	1 90	190
158	1.51	1.90	1.50	1 54 4	1 38 4	1.00	1.50	1 48
16~	1.45	1.87	1.85	2.054	1.50	1.23	1.40	1 904
168	216	2 32	2 254	2.05	215	2130	2 334	2 294
177	2 59	293	2.97	2.91	2 57	2619	2.58	2.92
178	2.0 /							
18	5.40	5.00	5.97	5.50	5.35	5.30	5.43	5.00
19	1.33	1.29	1.26	1.31	1.17	1.02	1.31	1.27
20								
21	3.47, 3.40	4.42, 4.24	4.77	******	3.44, 3.39	3.66, 3.35	3.46, 3.40	4.41, 4.22
Other			2.17 (21-OCOCH ₃) 1.97 (18-OCOCH ₃)					-

	126 6α-OH diac	127 6α-OH-5α-D	н	128 6β-ΟΗ		129 6β-OH	130 6β-OH	131 6β-OH-5α-O	н
		(H)	(oxo)	(H)	(oxo)	ulac	lactone	(H)	(oxo)
Solvent	С	м	M	M	M	c	M	M	M
H 17	1 74	1 384	1 384	1 73	1 73	1.60	176	1 206	1 200
īβ	2.13	2.11 °	2.11°	2.16°	2.16°	2.10°	2.21	2.03	2.03
2α	2.37	2.24°	2.24°	2.34°	2.34°	2.38	2.35	2.24°	2.24 °
2p 3α	2.50	2.54	2.54*	2.63*	2.63°	2.57	2.64	2.54°	2.54°
3β									
4α 40	6.28	2.59°	2.59°	\$5.78	5.78	5.82	5 79	1.98°	1.98 °
4p 5a)	1.339	2.22*	J		0102	5.77	2.80	2.80
5β								1.52	1.52
6x		2.41	2.41	4.27	4.27	4.36	4.27	3.70	3.70
ορ 7α	4.38	3.41 1.10°	3.41 1.01 °	1.45	1 384	1 374	1 534	1 28 4	1 205
7β	2.29"	2.16°	2.07 °	2.11 °	2.05°	2.13°	2.09 "	1.96 ^{c.s}	1.87
8	1.87°	1.72°	1.65	2.22°	2.14°	2.31 °	2.19°	2.02 ^{c.s}	1.95 c.s
10	1.05	0.97	0.88	1.14	1.06	1.03*	1.25	0.98	0.89
11α	4.63	4.79	4.54	4.79	4.54	4.63	4.90	4.79	4.55
11β 12π	1 644	1 475	1 566	1 496	1.59	1 (24	1.70		
128	2.66 "	1.47° 2.32°	2.63	1.48° 2.36°	1.58 2.61 °	1.03* 2.67*	1.72	1.4 / °	1.60°
14	1.64°	1.52 °	1.50°	1.61 °	1.52°	1.58 °	1.84	1.50°	1.54°
15a	1.98	1.89°	1.92°	1.95	1.95 ***	1.98°	2.14°	1.85°	1.91 °
15p 16a	1.87	1.58	1.42	1.50*	1.50° 1.91°-*	1.58	1.64	1.40°	1.40°
16β	2.27 °	2.14 °	2.25 °	2.35°	2.29°	2.25°	2.29 °	2.12°	2.24
17	2.97*	2.55°	2.90°	2.60°	2.91	2.97	2.95	2.55°	2.89
18	5.95	5.34	5.43	5.45 1.47	5.04	6.03 1.47	5.66	5.39	4.98
20 21	4.76*	3.43, 3.38	4.39, 4.20	3.45, 3.39	4.41, 4.22	4.76		3.44, 3.38	4.40, 4.21
Other	2.15 (21-OCOCH ₃)					2.16 (21-OCOCI	— H ₃)		
	(18-OCOCH ₃)	· · · · · · · · · · · · · · · · · · ·				1.94 (18-OCOCI	H ₃)		
<u></u>	132 17-Iso	133 5α-	DH-iso	134 2α-OH-3α	,5a-TH-iso	135 6α-OH-iso	136 6β-ΟͰ	I-iso	137 Аро
Solvent	M (P)	М		М		М	М		М
н	1 (0 (1 10)								
1α 18	1.69 (1.48) 2.175 (1.95)	1.3.	3°	1.27		1.73	1.71		1.72
2α	2.43° (2.35)	2.24	4	1.71		2.30	2.33		2.20 2.31 °
2β	2.55° (2.45)	2.5	3 a	3.74		2.62	2.62		2.55 ^{c.m}
.3α 3β				3.884					
4α	570 (5.82)	2.00) <i>a</i>	1.47 ^{c.s}	-		6 70		6.71
4β	5.70 (5.82)	2.3	24	1.47 ^{c.s}		50.12	5.78		5.71
5α 5β		1.50		1.49***					
6α	2.44 (2.08) ^c	1.3	30.5	1.27 ^{c.s}		1000107	4.27		2.30°
6β	2.52 (2.25)°	1.3	Sc.s	1.27		4.31	1 416		2.52
/x 78	$2.02^{\circ} (1.76^{\circ.3})$	1.10)°	1.08*		1.19 ⁻ 2.24°	1.41° 2.13°-		1.19 2.00°
8	1.76 (1.71 °.3)	1.60)°	1.50°		1.82	2.13 c.s		1.79"
9	0.98 (0.74)	0.78	34	0.78		0.97	0.97		1.12ª
10 11α 11β	4.52 (4.51)	4.5	3 a	4.52		4.51	4.52		4.62 <i>ª</i>
12α	1.28 (1.32)	1.2	7.4	1.24°		1.30	1.30		1.38"
12β	2.20 (2.55)	2.18	3a	2.17		2.20	2.21		2.46
14 157	1.39 (1.69) 2 በ1 (1.96 ዓ	1.58	5-)¢	1.27°		1.03 2.21 °	1.61		1.5.5 ***
15β	1.37 (1.37°)	1.30)°	1.36°		1.40	1.41 °		1.45 °.".s
16x	1.87 ^s (1.87) ^c	1.88	3 c.s	1.85		1.89 ^{c,s}	1.90***		1.88
10p 17	1.8/° (2.09)° 3.30° (3.83)	1.89	3a	3.25		3.30	1.90**		2.53
18	4.90 (5.31)	4.8	5	?		4.90	4.90		4.98
19 20	1.29 (1.23)	1.11	l	0.90		1.28	1.45		1.30
21	4.32 (4.78) 4.19 (4.57)	4.32	2, 4.18	4.33, 4.18		4.31, 4.18	4.33, 4	.20	3.39 ⁻ 4.72 ^a
Other							10000000		Teacher T

138 5α-DH-apo	139 2α-OH-3α,5α-TH-apo	140 19-Nor-lactone	
М	М	В	
1 36°	1 27 °	1.02	
213	1719	1.84	
2.25		2.38	
2 54 4	3 74 "	207	
2.54	5.74		
	3.884		
2.004	147		
2.00	1.47	≻6.01	
1.50	1.47		
1.50	1.49		
1 2765	1 2765	204	
1.37**	1.27	1.04	
1.37***	1.27**	1.00	
1.09*	1.08	0.75	
1.85	1.85	1.34	
1.62	1.52	0.80	
0.93*	0.91*	0.34	
		1.99	
4.614	4.60	4.31	
1.34°	1.32*	0.81	
2.43 "	2.41	1.81	
1.50 ^{c.s}	1.52°	1.80	
1.93°	?	1.44	
1.40 ^{c.s}	?	0.83	
1.87°	?	1.80	
2.53 ^{c.s}	?	0.89	
2.53 ^{c.s}	2.52	2.53	
	?	5.19	
1.12	0.90	Name -	
3.56*	3.56		
4.70 "	4.69		
		Now.	
	138 5α-DH-apo M 1.36 ^c 2.13 2.25 2.54 ^c 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	138 139 139 140 S_{x} -DH-apo 2_{x} -OH- 3_{x} , 5_{x} -TH-apo 19-Nor-lactone M M B 1.36' 1.27' 1.84 2.25

(e) Bile Acids

	141 5β-Cholanic	1 42 Litho	143 Cheno	144 Urso	145 Deoxy	146 Na deoxy
Solvent	С	C/D	М	M	M	w
н						
1 a	1.74	1.75	1.83	1.81	1.77	1.78
1B	0.88	0.94	0.99	1.03	0.98	0.98
2α	1.34	1.29	1.36	1.28	1.44	1.37
2β	1.34	1.60	1.59	1.62	1.59	1.63
3α	1.74					
3β	1.18	3.51	3.37	3.47	3.54	3.61
4α	1.72	1.71	2.25	1.81	1.79	1.80
4β	1.23	1.45	1.66	1.55	1.48	1.51
5α						
5β	1.27	1.35	1.36	1.47	1.39	1.42
6 α	1.20	1.23	1.52	1.60	1.26	1.19
6β	1.86	1.83	1.98	1.60	1.89	1.43
7α	1.08	1.09	<u> </u>	3.49	1.19	1.30
7β	1.37	1.39	3.80	Tour of T	1.42	1.82
8	1.39	1.38	1.50	1.45	1.46	1.42
9	1.39	1.41	1.87	1.48	1.89	1.82
10						
11a	1.39	1.38	1.48	1.47	1.53	1.55
11β	1.24	1.23	1.35	1.34	1.53	1.49
12α	1.12	1.14	1.21	1.19		
12β	1.92	1.96	2.00	2.03	3.98	4.02
14	1.07	1.05	1.48	1.09	1.62	1.57
15a	1.02 4	1.04 4	1.094	1.46 *	1.09 4	1.03 4
15β	1.594	1.564	1.744	1.90*	1.624	1.634
16a	1.884	1.854	1.90*	1.86 4	1.874	1.91 9
16β	1.294	1.274	1.32 *	1.304	1.29 4	1.24 9
17	1.10	1.10	1.18	1.25	1.83	1.72
18	0.65	0.64	0.69	0.71	0.71	0.70
19	0.91	0.91	0.93	0.94	0.93	0.90
20	1.43	1.41	1.45	1.44	1.42	1.37
21	0.95	0.92	0.96	0.96	1.01	0.96
22	1.79, 1.34	1.75, 1.29	1.79, 1.31	1.80, 1.32	1.78, 1.35	1.37, 1.67
23	2.38, 2.24	2.32, 2.12	2.31, 2.24	2.35, 2.21	2.38, 2.23	2.05, 2.22
24		,				
25				1000/1001		
26, 27	1000101					
Other		—				

	1 47 3-Epi-deoxy	148 Cholic	149 Na Cholate	150 3-Οx0-7α,12α-ΟΗ	$151 \\ \Delta^{4.6}$ -3-one
Solvent	C/D	М	W	С	C
н					
1α	ca. 1.31 ^{d.h.s}	1.81	1.85	1.97	171
1β	ca. 1.31 ^{d.h.s}	0.99	1.04	1.40	200
2α	1.47°	1.45	1.45	2.43	245
2β	1.32°	1.59	1.68	2.13	2 58
3α	3.93	1999/1011			
3β		3.37	3.49		1000707
4α	1.86	2.29	2.14	3.40)
4β	1.17°	1.66	1.72	2.20	≥5.68
5α	100000				,
5β	1.61 °	1.38	1.44	1.81	
6α	1.02	1.53	1.63	1.57)
6β	1.73°	1.95	1.94	1.92	>6.15
7α	0.93		_		1
7β	1.26 °	3.80	3.90	3.93	>6.10
8	1.30 ^{<i>h.n</i>}	1.55	1.53	1.72	2.19
9	1.64 ^{c.h}	2.25	2.21	2.35	1.22
10					
11x	ca. 1.37 ^{d.h.s}	1.58	1.66	1.68	1.54
11β	ca. 1.37 ^{d.h.s}	1.58	1.54	1.62	1.43
12a			Table Sec.		1.23
12β	3.83	3.97	4.06	4.04	2.05
14	1.43 ^{c.s}	2.00	1.90	1.94	1.21
15α	1.43 ^{c.s}	1.124	1.104	1.27	1.28
15β	0.91	1.764	1.794	1.67	1.80
16a	1.71 °	1.90 4	2.01 4	1.90 4	1.944
16β	1.12	1.32 4	1.31 4	1.334	1.394
17	1.63 ^{<i>d.h</i>}	1.86	1.77	1.77	1.16
18	0.55	0.72	0.73	0.72	0.76
19	0.80	0.92	0.93	1.00	1.11
20	1.27°	1.43	1.43	1.42	1.48
21	0.86	1.02	1.01	0.99	0.95
22	1.21°, 1.65°	1.79, 1.35	1.39, 1.74	1.36, 1.82	1.83, 1.35
23	2.04, 2.19	2.37, 2.21	2.11, 2.28	2.25, 2.38	2.42, 2.28
24					
25		Taurer -			1996-1971
26, 27					
Other	_			3.28 (CO ₂ CH ₃)	

(f) Sterols and miscellaneous

	152 3β,6β-ОНС	153 6α-OH-3-one	154 6β-OH-3-one	1 55 5α-OH-6-NOH	1 56 3β-AcO-5α- OH-6-NOH	157 3β-AcO-5α- OMe-6-NOH	1 58 3β-AcO-5β-OH- 6-NOAc
Solvent	С	С	C	С	С	С	С
н							
1 2	0.96°	1.38°	1.30°	1.43	1.67	1.66	1.90
16	1.65°	2.00 °	1.95°	1.37	1.50	1.45	1.43
$\frac{1}{2\alpha}$	1.82 °	2.32	2.31	1.40	1.78	1.80	1.67
$\overline{2B}$	1.43°	2.40	2.43 "	1.40	1.60	1.53	1.67
$\frac{-r}{3\alpha}$	3.65			1.40	5.02	4.85	5.05
38				1.40			
4a	1.62°	2.73	2.10 <i>ª</i>	1.89	2.20	1.58	1.90
46	1.71 °	2.22	2.80 "	1.50	1.74	1.43	2.16
50	1.15°	1.41 °	1.56°				
58				1998/107			
64	3.80		3.77				Sector:
68		3.47					
7_{α}	1.11	0.89	1.23°	1.82	1.74	1.43	1.52
7~	1.80 °	2.02	1.83 ^{c.s}	3.10	3.02	3.10	3.13
8	1.71 °	1.47°	1.78 c.s	1.47	1.43	1.46	1.52
9	0.67	0.76	0.77	1.66	1.72	1.72	1.40
10			teacher 1				
11a	1.58°	1.54°	1.54°] 1 15 1 29	1 26 9	1.25 1.26	1 42 2 02
116	1.36°	1.36°	1.46°	1.15, 1.28	1.35, ?	1.25, 1.36	1.42, 2.02
12 [']	1.104	1.16°	1.15°	1.17	1.19	1.19	1.16
128	1.98	2.01 °	2.02	1.98	1.96	1.96	2.01
14	1.10 ^{c.s}	1.07 ^{c.s}	1.04 ^{c.s}	1.18	1.22	1.22	1.13
15a	1.56	1.58 °	1.58 °	1.62	1.65	1.62	1.62
15β	1.07 ^{c.s}	1.10 ^{c.s}	1.10 ^{c.s}	1.10	1.10	1.10	1.12
16a	1.24 °-4	1.18 ^{c.q}	1.27°-4	2122 188	1 25 1 83	1 25 1 84	1 28 1 85
16β	1.814	1.834	1.83°-4	£ 1.22, 1.88	1.25, 1.65	1.25, 1.84	1.20, 1.05
17	ca. 1.13°	ca. 1.13°	ca. 1.1 °	1.07	1.13	1.12	1.12
18	0.69	0.68	0.72	0.62	0.62	0.62	0.63
19	1.03	1.02	1.21	0.81	0.80	0.83	0.83
20	1.36°	1.37°	1.37°	1.31	1.32	1.32	1.37
21	0.90	0.91	0.91	0.88	0.88	0.87	0.88
22	1.32, 0.98°	1.33, 0.98°	1.33, 0.98°	0.97, 1.33	0.97, 1.32	0.97, 1.32	0.98, 1.33
23	1.56, 1.10°	1.55, 1.10°	1.56, 1.10°	1.11, 1.60	1.11, ?	1.10, 1.32	1.12, 1.58
24	ca. 1.1°	ca. 1.1°	ca. 1.1°	<i>ca.</i> 1.1	ca. 1.1	ca. 1.1	ca. 1.07
25	1.50°	1.51 °	1.50°	1.45	1.47	1.49	1.47
26, 27	0.87, 0.86	0.87, 0.87	0.87, 0.87	0.84, 0.84	0.84, 0.83	0.84, 0.83	0.84, 0.84
Other		_	-1994	9.2 (NOH)	9.4 (NOH) 2.89 (OH) 2.03 (COCH ₃)	9.5 (NOH) 3.07 (OCH ₃) 2.0 (OCOCH ₃)	3.63 (OH) 2.03 (OCOCH ₃)

Table 2 (continued)

	159 4,4-Me ₂ - 2-en-7-one	160 3β-OH-4,4- Me ₂ -7-one	161 3β-OAc-4,4- Me ₂ -7-one	$\frac{162}{\Delta^7}$ -Chol Ac	163 Ergo Ac	164 26-Ph- Δ ^{20(22),23,25}	165 24-Ph- Δ ^{20(22),23}	166 Hec Ac
Solvent	C?	C?	C?	C(B)	C(B)	С	С	C
н								
1α	1.70	1.07	1.13	1.30 (1.18)	1.35 (1.15)	1.09	1.10	1.03
1β	1.98	1.75	1.75	1.79 (1.66)	1.87 (1.62)	1.86	1.85	1.59
2α	5.49	1.72	1.75	1.89 (1.83)	1.90 (1.92)	1.85	1.85	1.83
2B	{	1.65	1.00	1.53 (1.50)	1.58 (1.55)	1.52	1.52	1.50*
3α 20	5.41	3.24	4.4/	4.02 (4.80)	4.08 (4.84)	3.33	5.55	4.08
sp 4	J			2 43 (2 60)	2 50 (2 62)	2 30	2 31	1.679
40 4B				2.45 (2.00)	2.30 (2.02)	2.50	2.51	1.37
4p 5~)			2.20 (2.40)	2.55 (2.40)	2.27	2.2.7	1 199
58	}1.62	1.24	1.31					
6a	2.27	2.31	2.29] = 10 (5 57)	5 54 (5 50)	6.27	6.26	1.33 ^{c.s}
6B	2.42	2.40	2.39	>5.48 (5.57)	5.54 (5.59)	5.30	5.30	1.33 ^{c.s}
7α				5 21 (5 45)	5 75 (5 AG)	1.57	1.56	0.95
7β				> 5. 51 (5. 4 5)	5.55 (5.40)	2.00	2.00	1.78°
8	2.35	2.27	2.27			1.47	1.48	1.91
9	1.08	0.98	1.01	1.93 (1.87)	2.02 (1.93)	0.98	0.98	1.13°
11a	1.57	1.50	1.50	1.60 (1.61)	1.68 (1.60)	1.57	1.57	2.23
11β	1.53	1.50	1.50	1.49 (1.39)	1.58 (1.40)	1.45	1.46	2.40
12a	1.09	1.04	1.05	1.13 (1.11)	1.23 (1.15)	1.23	1.24	
12B	2.00	1.98	1.98	2.00 (2.01)	2.08 (1.98)	1.84	1.84	1 446.8
14	1.40	1.35	1.36	1.83 (1.83)	1.88 (1.85)	1.12	1.13	1.44 ***
15a	2.15	2.18	2.19	1.03 (1.70)	1.00 (1.03)	1.71	1.70	2.11
15p	0.94	1.92	1.90	1.33(1.47) 1.20(1.50)	1.37(1.42) 1.24(1.37)9	1.24	1.24	1.43
160	1.50	1.09	1.07	1.29 (1.30)	$1.24(1.37)^{-1}$	1 804	1.004	4.52
17	1.25	1.24	1.24	$1.91(1.00)^{-1}$	1 31 (1 21)	2 14	215	2 50
18	0.65	0.63	0.63	0.54(0.64)	0.62(0.68)	0.59	0.60	1.00
19	1.12	1.12	1.14	0.86 (0.90)	0.95(0.92)	1.01	1.01	0.88
20	1.34	1.35	1.35	1.31 (1.42)	2.03 (2.05)			1.74
21	0.91	0.90	0.90	0.87 (1.00)	1.02(1.11)	1.85	1.90	1.06
22, 22	?	?	?	1.04 (1.33)	5.18 (5.22)	6.01	6.07	
·				0.95 (1.06)	. ,			
23,23	?	?	?	1.28 (1.45)	5.21 (5.26)	6.64	7.08	1.58, 1.68?°
				1.03 (1.22)				
24, 24	?	?	?	1.00 (1.20)	1.84 (1.90)	6.32	6.47	1.56, 1.42?°
25	1.52	1.50	1.50	1.45 (1.56)	1.48 (1.50)	6.88		1.62°
26, 27	0.86	0.86, 0.85	0.86, 0.85	0.79 (0.91)	0.81 (0.91)	6.51		3.35 (26-ax),
<u>.</u>				0.80 (0.92)	0.81 (0.91)			3.49 (26-eq)
Other	0.94, 0.92	0.96, 0.84	0.92, 0.85					0.80 (27)
	$(4, 4 - Me_2)$	$(4, 4 - Me_2)$	$(4, 4 - Me_2)$	1000107				2.11 (OAc)

Solvents: C, CDCl₃; M, CD₃OD; B, C₆D₆; P, C₅D₅N; D, (CD₃)₂SO; W, D₂O.^{*a*} Abnormal signal profile: signal clearly visible in the 1D spectrum, but not conforming to templates illustrated in Figures 1–4: see Table 3 for further details. ^{*b*} Signal with a distinctive 'type (*b*)' profile—see the Figures. ^{*c*} Located from COSY spectrum; likely error +0.02 ppm. ^{*d*} Located from COSYDEC spectrum: likely error +0.02 ppm. ^{*b*} Located by two-dimensional ¹H-¹³C heteronuclear correlation spectroscopy. ^{*r*} Located or confirmed by nuclear Overhauser effect—see the text. ^{*q*} Reported assignments, or our own, for a geminal pair, which seem questionable in view of general trends (see the Discussion). ^{*r*} Reversal of reported assignments for a geminal pair, to bring δ values into line with general trends (see the Discussion). ^{*s*} Signal profile strongly perturbed by second-order effects resulting from proximity of strongly spin-coupled protons.

Table 3.	ΗĽ	NMR	signals	with	abnormal	or	distinctive	profiles.

No.	Compound	Н	Multiplicity, J values ^a
 Andros	stanes		
26	2α-OHT	1α	t, $J_{1_{\alpha},2_{\alpha}} \approx J_{\alpha} \approx 13$ Hz (overlapping 11 α -H signal)
27	2 B -OHT	1α	dd. $J_{14,25}$ = 13.5, $J_{14,25}$ = 5.5 Hz
	(inverted chair conformation in	16	t. $J_{\text{cm}} \approx J_{10,2} \approx 13.5 \text{ Hz}$
	ring A)	6β	tdd, $J_{acm} \approx J_{c0,7a} \approx 12, J_{c0,7a} 5, J_{A,c0} 1 \text{ Hz}$
28	6a-OHT	7a	a, $J_{a} \approx J_{c} \approx J_{a} \approx 11.5 \text{ Hz}$
		76	$ddd, J_{1} = 11.5; J_{co} = 5.5, J_{To} = 3.5 Hz$
		128	ddd. J_{1} 12.5; J_{11} 12.9; J_{12} 12.9; J
29	6 B-OHT	4	S
	- F	7a	td. poorly resolved, w_1 30 Hz
30	7α-ΟΗΤ	6α	dd, J _{err} 14.5, J ₆₋₇₀ 3 Hz
		6B	ddd, J_{acm} 14.5, $J_{60,70}$ 3, $J_{4,60}$ 1.5 Hz
31	11α-OHT	12α	t, $J_{ann} \approx J_{11a,12a} \approx 11.5 \text{ Hz}$
		128	dd, J_{rem} 11.5, $J_{110,120}$ 4.5 Hz
32	11B-OHT	9'	dd, $J_{9,0}$ 11, $J_{9,11,2}$ 3 Hz
	,	12a	dd, J_{aaa} 14, J_{11a} 12, 3 Hz
		12β	dd, J_{sem} 14, $J_{11_{\text{s}}}$ 3 Hz
33	14-OHT	8	td, $J_{7_{8}8} \approx J_{8,9} \approx 11, J_{7_{8}8} 3.5 \text{ Hz}$
34	15α-OHT	14	dd, $J_{8,14}$ 10.5, $J_{14,156}$ 9 Hz
		16a	dt, J_{sem} 14, $J_{158,16\pi} \approx J_{16\pi,17} \approx 9 \text{ Hz}$
		16β	ddd, J_{eem} 14, $J_{168,17}$ 9, $J_{158,168}$ 3 Hz
35	16α-OHT	17	d, J _{168,17} 5.7 Hz
36	16B-OHT	15β	td, $J_{nem} \approx J_{14,150} \approx 13, J_{150,160}$ 5 Hz
	•	16a	td, $J_{16,n,17} \approx J_{15,n,16n} \approx 7.5$, $J_{15,n,16n}$ 5 Hz
		17	d, J _{16g 17} 7.5 Hz
38	Δ ⁶ -Τ	6,7	s (2 H)
40	2α-ΟΗΑ	1 ⁶	dd, J _{eem} 13.5, J _{18,28} 6 Hz
		2β	dd, $J_{1_{2},2_{1}}$ 14, $J_{1_{2},2_{1}}$ 6 Hz
41	4-OHA	6α	complex m, w_1 23 Hz
42	6в-она	4	S S
	•	12β	ddd, J_{nem} 12.5, J_{11n} 12.8, J_{11n} 12.8, 4 and 2.5 Hz
43	7α-OHA	6β	ddd, J_{rem} 14.5, $J_{68,78}$ 3, $J_{4,68}$ 2 Hz
44	7β-ΟΗΑ	6α	dd, J_{eem} 14, J_{6a} 7a 5 Hz
	•	8	q, $J_{7_{7}} \approx J_{8} \approx J_{8,14} \approx 10 \text{ Hz}$
45	11 α-OHA	9	t, $J_{8,9} \approx J_{9,116} \approx 10 \text{Hz}$
		12α	t, $J_{11, B, 12g} \approx J_{gem} \approx 11.5 \text{ Hz}$
46	11β-OHA	9	dd, $J_{8,9}$ 11, $J_{9,11\pi}$ 3 Hz
		12α	dd, J_{gem} 14, $J_{11\pi,12\pi}$ 3 Hz (partly obscured by 19-H ₃)
		12β	dd, J_{gem} 14, $J_{11g,126}$ 2.5 Hz
47	14-OHA	8	td, $J_{7a,8} \approx J_{8,9} \approx 12$, $J_{7b,8}$ 3 Hz
48	15a-OHA	14	$t, J_{8,14} \approx J_{14,156} \approx 10 \text{Hz}$
		16a	dd, J_{gem} 19, $J_{158,16\pi}$ 6.5 Hz
		16β	dd, J_{sem} 19, $J_{158,168}$ 8 Hz
50	19-OHA	2β	symmetrical ddd, J_{gem} 17, $J_{1\alpha,2\beta}$ 14, $J_{1\beta,2\beta}$ 5 Hz
		19,19	dd, <i>J</i> 11 Hz
52	Δ ⁶ -Α	6,7	s (2 H)
		8	dd or t, J 11 and 10 Hz
56	16-OxOT	15β	dd, J _{gem} 18.5, J _{14,15} 12 Hz
Pregna	ines		
59	2 B-OHP	1α	dd. J_{222} 14. J_{12} 2. 5.5 Hz
•••	-p	2α	ddd, $J_{10,22}$ 14, $J_{12,22}$ 5.5, $J_{22,014}$ 1.5 Hz
61	6α-OHP	7œ	$q_{1}J_{6n} = \pi \approx J_{nem} \approx J_{7n} \approx 11.5 \text{ Hz}$
62	6 B-OHP	4	S
	-F	7α	ddd, J_{rem} 14.5, J_{7a} 8 12.5, J_{6a} 7 3 Hz
64	7 B-OHP	6α	dd, J_{aam} 13.5, J_{6a} 7a 5 Hz
66	11a-OHP	9α	t, $J_{8,0} \approx J_{0,11,0} \approx 10 \text{ Hz}$
		12a	t, $J_{\text{sem}} \approx J_{118,12a} \approx 11 \text{ Hz}$
		12β	dd, $J_{\text{rem}} = 11, J_{118, 128} 5 \text{ Hz}$
69	14-OHP	8β	td, $J_{8,9} \approx J_{7,8} \approx 11.5$ Hz, $J_{7,8,8}$ 3 Hz
72	16α-OHP	15B	m, J 14, 11, and 9 Hz
		17	d, J _{166.17} 6.5 Hz
74	19-OHP	2β	symmetrical ddd, J_{gem} 17.5, $J_{1\alpha,1B}$ 13.5, $J_{1B,2B}$ 5 Hz
		19,19	dd, J 10.5 Hz, (low-field d broadened by coupling to
		-	1α-H; J 0.5–1 Hz)
77	Δ^{6} -P	6,7	s (2 H)
78	$\Delta^{1.6}$ -P	1	d, J _{1.2} 10 Hz
		2	dd, J _{1.2} 10 Hz, J _{2.4} 2 Hz

Pregna	nes		
79	6β,9α-ОНР	4	s
		8	td, $J_{7\alpha.8} \approx J_{8.14} \approx 12, J_{7\beta.8} 4$ Hz
80	6β,11α-(OH) ₂ P	2β	as for 19-OHP
		4	S A 125 L A 2 Hz
		/ß	dt, J_{gem} 13.5, $J_{6\alpha,7\beta} \approx J_{7\beta,8} \approx 3$ HZ
		12α 120	$I_{J_{\text{gem}}} \approx J_{11\beta,12\alpha} \approx 11.5 \text{ Hz}$
07	16. 21 OUP	12p 17	$dd, J_{gem} \approx 11.5, J_{11\beta,12\beta} = 4.5 112$
83 84	68 118 21-OHP	28	symmetrical ddd $J = 17 J_{12} = 15 J_{10} = 5 \text{ Hz}$
04	0,110,21-0111	2 p 7~	ddd J_{1} 14 J_{7} o 11.5 J_{6} 7 4 Hz
		9	dd, $J_{e,0}$ 11, $J_{0,112}$ 3.5 Hz
		12x	dd, J_{aem} 13.5, J_{11a} 12a 3.5 Hz
		12B	dd, J_{aem} 13.5, $J_{11a, 12b}$ 2.5 Hz
85	5α,17α-P-20-one	17	dd, J 8 and 3 Hz
86	16β-ОН	17	d, J 2 Hz
87	2a,3a-OH-5a-20-one	1α	t, $J_{\rm gem} \approx J_{1a,2\beta} \approx 12 {\rm Hz}$
		1β	dd, J_{gem} 12, $J_{1\beta,2\beta}$ 4.5 Hz
		2β	dt or dd, $J_{1\alpha,2\beta}$ 12, $J_{1\beta,2\beta} \approx J_{2\beta,3\beta} \approx 3.5$ Hz
		3β	narrow m, $w_{\frac{1}{2}}$ 8.5 Hz
89	3β,6α-OH-5α-20-one	4β 7	ca. q, $J_{3\alpha,4\beta} \approx J_{gem} \approx J_{4\beta,5} \approx 12$ Hz
		/α 70	ca. q, $J_{6\beta,7\alpha} \approx J_{gem} \approx J_{7\alpha,8} \approx 12 \text{ Hz}$
07	28 OA a 128 OH A16 20 ana	7p 158	$\begin{array}{ccc} \text{Gl}, J_{\text{gem}} & 12, J_{6\beta,7\beta} \approx J_{7\beta,8} \approx 4 \text{fl} 2 \\ \text{ddd} & I & 17 I & 11 I & 2 \text{Hz} \end{array}$
92	$3_{r} 6_{r} OH_{5} B_{2} O_{0} O_{r} B_{1}$	15p 18	td $I \sim I_{14,156} \approx 14 I_{15,6,16} \approx 17$
15	Ju, ou-011-3p-20-0116	4α	dm. w, 23 Hz
102	6-Oxo-P	7a	$dd_{1}J_{1} = 16, J_{7} = 12 \text{ Hz}$
10-		7B	$dd, J_{rem} = 16, J_{78,8} 4 Hz$
104	20 <i>S</i> -OH-∆ ⁴ -3-one	17	q, $J_{16\pi,17} \approx J_{166,17} \approx J_{17,20} \approx 9$ Hz
		20	ca. quintet, J 6.5 Hz
105	$20R-OH-\Delta^4$ -3-one	17	$q, J_{16\alpha, 17} \approx J_{16\beta, 17} \approx J_{17, 20} \approx 9 \text{ Hz}$
			ca. sextet, $w_{\frac{1}{2}}$ 27.5 Hz
106	$9\alpha, 20R-OH-\Delta^4$ -3-one	17	q, $J_{16a,17} \approx J_{16B,17} \approx J_{17,20} \approx 9.5 \text{ Hz}$
		20	dq, $J_{17,20}$ 9.5, $J_{20,21}$ 6 Hz
107	Cortisone	12	d, $J_{8.9}$ II Hz
		12α 120	$d_{J} J_{gem} 12.5 \Pi Z$
100	Cortisol	6B	symmetrical tdd $I \approx I_{con} \approx 14 J_{con} 55$
105	Colusor	υþ	$J_{\rm cos} = 1.5 \mathrm{Hz}$
		9	dd. $J_{0,0}$ 11. $J_{0,112}$ 3.5 Hz
		12α	dd, J_{sem} 13.5, J_{11a} 12a 3 Hz
		12β	dd, J_{rem} 13.5, $J_{11a,126}$ 2.5 Hz
111	18-OH Cortisol	9	dd, $J_{8,9}^{*}$ 11, $J_{9,11\alpha}^{*}$ 3.5 Hz
		12a	dd, J_{gem} 13, $J_{11\alpha,12\alpha}$ 3 Hz
		18,18	dd, <i>J</i> 10 Hz
Aldost	erone derivatives ^b		
121	Diac	17	dd, J 10 and 8 Hz
	_	21,21	s (2 H)
122	Lactone	9	d, J _{8.9} 8.5 Hz
		12α 128	u, J _{gem} ð.) HZ da 1 95 1 65 11-
124	3., 5., TH (U)	12p 17	$d_{J_{10}}$ J_{gem} 0.3, $J_{11a,12\beta}$ 0.3 HZ
124	Ja, Ja-1 fr (fr) 6~-OH diac	7~	$a_1 J_1 a_2 = \alpha J_1 \alpha A_2 \alpha \alpha A_2 \alpha \alpha A_2$
120	ou-on diac	78	$d_{\rm r}$, $\sigma_{6\beta,7\alpha} \sim \sigma_{\rm gem} \sim \sigma_{7\alpha,8} \sim 12 {\rm mz}$ $d_{\rm r}$, $d_{\rm r}$, $d_{$
		17	dd, $J 10$ and 9 Hz
		21,21	s (2 H)
129	6β-OH diac	4	S
	•	7β	td, $J_{gem} \approx J_{7\alpha,8} \approx 13$, $J_{6\alpha,7\alpha}$ 3 Hz
130	6β-OH lactone	4	s .
		7a	ddd, J _{gem} 14, J _{7a.8} 11.5, J _{6a.7a} 3 Hz
		7β	dt, J_{gem} 14, $J_{6\alpha,7\beta} \approx J_{7\beta,8} \approx 2.5 \text{ Hz}$
		16a	complex m, $w_{\frac{1}{2}}$ 30 Hz
122	17 Inc (in C D N)	17	dd, J 12 and 4.5 Hz
132	$1/-1$ so (in C_5D_5N)	1/	aa, J 8.4 and 4 Hz td $I \sim I \sim 10 I = 0 \text{ Hz}$
155	Ja-DU-180	2p 4c	$\begin{array}{cccc} \text{IU}, J_{1\alpha,2\beta} \approx J_{\text{gem}} \approx 10, J_{1\beta,2\beta} & \text{HZ} \\ \text{dm} & I & 18 & I & I & \sim 7 \text{Hz} \end{array}$
		4α 4β	t $I \sim I_{\alpha,4\alpha} \approx 18$ Hz
		17 17	$J_{4B,5} \sim J_{4B,5} \sim 10 112$ dd. J 10.5 and 6 Hz
134	2α , 3α -OH- 5α -TH-iso	2β	ddd, $J_{1_2,2_3}$ 12, $J_{1_3,2_3}$, $J_{2_3,2_3}$ 4.5 and 3 Hz
•	,	3β	narrow m, w_{\pm} 9 Hz
135	6α-OH 17-iso		q, $J_{6B,7a} \approx J_{gem}^{2} \approx J_{7a,8} \approx 12 \text{ Hz}$
136	6β-OH 17-iso	4	S S

Aldos	terone derivatives ^b		
137	Аро	20	dd, J _{20,21} 8, J _{17,20} 6.5 Hz
		21	d, J _{20.21} 8 Hz
138	5α-DH-apo	4α	ddd, J _{gem} 16, J _{4a.5} 4, J _{2a.4a} 2.5 Hz
		4β	t, $J_{\rm gem} \approx J_{4\beta,5} \approx 16 {\rm Hz}$
		20,21	as for apo
139	2α-OH-3α,5α-TH-apo	2β,3β	as for 2a,3a-OH-5a-TH-iso
		20,21	as for apo
Sterol	s etc.		
	6β-OH-5α-CH-3-one	1β	ddd, J _{sem} 13, J ₁₈ 28 6, J ₁₈ 27 2 Hz
		2β	td, $J_{aem} \approx J_{1a} \approx 15$, $J_{1a} \approx 6$ Hz
		4α	ddd, J_{aem} 15, J_{4a} 5 3.5, J_{2a} 4 2 Hz
		4β	t, $J_{\text{sem}} \approx J_{48.5} \approx 15 \text{Hz}$
			. Berrit

^a J values estimated from measurements of signal splittings to nearest 0.5 Hz (J_{gem} is actually negative). ^b Unless otherwise indicated, all aldosterone derivatives with the 11 β ,18-epoxy bridge show the following features: 9-H, d, $J_{8.9}$ 10–12 Hz; 11 α -H, d, $J_{11\alpha,12\beta}$ 6–7 Hz; 12 α -H, d, J_{gem} 10–13 Hz; 12 β -H, dd, 10–13, $J_{11\alpha,12\beta}$ 6–7 Hz.

in the Figures. Signals clearly discerned as abnormal, *i.e.* not conforming to the normal template patterns, are indicated by a superscript a in Table 2. Their observed profiles are listed in Table 3; they are, in the great majority of cases, a consequence of a reduced number of vicinal protons by virtue of substitution.

Inspection of the tabulated data showed that chemical shifts for protons at particular sites in the steroid molecule are liable to be changed very significantly by the introduction of hydroxy or other substituents at locations up to three C-C bonds away, especially where there is strong through-space (Van der Waals) interaction with a neighbouring polar group. Small substituent effects (mainly <0.1 ppm) may be observed over longer distances. These are regarded as significant only where they are reliably supported by data for several compounds. Table 4 presents the mean substituent increments found among the present compounds for hydroxy groups and a few other substitution types, including increments associated with an aldosterone-like structure bridged by oxygen between the 11β- and 18-positions. Other useful substituent increments may be derived from data for appropriate pairs of compounds by subtraction. Use of these increments permits estimates to be made of ¹H chemical shifts for many compounds not yet studied, in much the same way as for the angular methyl protons by use of Zürcher's data. $^{52-54.56}$ Additivity of increments is found generally to be good, except where conformational differences are likely, or where two or more polar substituents are so close as to interact strongly.

Inspection of substituent increments has revealed a number of regularities in relation to structure, and particularly in relation to the bonding and geometric relationship between the substituent and the protons affected. Some of these findings have been foreshadowed by earlier work, but a much more extensive analysis is now possible.

Discussion

¹H Chemical Shifts in Steroids.—Axial protons are well known to resonate at higher field than equatorial protons in cyclohexanes,⁵⁶ except in the vicinity of substituents. The same is generally true for protons on the steroid ring system, where the axial proton signals (in CDCl₃ as the solvent) are commonly found in the range δ 0.7–1.5, and equatorial protons resonate in the range δ 1.4–2.1. This generalisation can be used, with caution, for assigning the individual chemical shifts of a geminal pair located from a COSY cross-peak or a ¹H–¹³C heteronuclear correlation spectrum. However, the relative shifts are usually reversed at positions α to carbonyl (e.g. at C-2 in 3-oxo steroids), or at the γ position in an α , β -unsaturated ketone (e.g. C-6 in 4-en-3-ones), although in the strongly associating solvent deuteriobenzene, the normal order of chemical shifts (eq. > ax.) may be preserved even α to carbonyl (see the data for compound **76**). The relative chemical shifts of geminal pairs may also be marginally reversed, or approximately equalised, in the vicinity of substituents, or when the axial proton of the geminal pair is under steric compression, as for example in a 1,3-relationship to one or both of the angular methyl groups: this commonly occurs for the 2 β - and 6 β -protons in 5 α -steroids (e.g. for compounds **8**, **10**, **85**, and **90**), and occasionally for the 11 β -proton (e.g. compounds **65**, **68**, and **115**).

While the axial/equatorial distinction is blurred in the fivemembered and conformationally mobile⁶⁰ ring D, the quasiaxial 15 β -H usually resonates at higher field than the quasiequatorial 15 α -H. Our observations (NOESY) for one bile acid (147) agree with this generalisation, although the reverse assignments have been suggested for some other bile acids. Similarly, for androstanes substituted only in ring A, the quasiaxial 17 α -H resonates at higher field than the quasi-equatorial 17 β -H.

No such distinction is seen at C-16, where both 16α -H and 16β-H are of intermediate conformational character, especially when ring D approximates to the twist conformation about an axis through C-16 and the mid-point of the 13,14-bond. The chemical shifts of the $16\alpha/16\beta$ pair of protons are generally strongly controlled by the nature of any substituent at C-17, 16B-H being the more deshielded in androstan-17-ones and pregnan-20-ones, in contrast with 16α -H being the more deshielded in and rost an 17β -ols. There has been uncertainty concerning the $16\alpha/\beta$ assignments for bile acids (cholane derivatives) and sterols. Reported ¹H spectra of bile acids^{20,2} and for one group of cholestane derivatives ³⁴ list 16a-H as having a larger chemical shift than 16β-H, as for and rostan-17βols, whereas the reverse assignments are proposed for the 16geminal pair in some other sterols.^{33,36} One report ³² leaves this pair of signals unallocated. It seems unlikely that the relative shifts at C-16 differ markedly between the cholane and cholestane series; further study is needed to establish which is correct.

The various assignments discussed above rest largely upon the results of selective NOE difference experiments, in which the C-18 and C-19 methyl groups of a number of steroids studied by us and by others have been irradiated to highlight particularly the neighbouring protons on the β -face of the molecule. The widths in the ω_1 and ω_2 dimensions of COSY cross peaks for geminal pairs, where these cross peaks are not so overlapped by others as to be indistinct, provide the best method for distinguishing between resonances of axial or equatorial protons, but give little help for the protons of ring D, where cross peaks for geminal-pair interactions are normally of similar width in each dimension.

We draw attention to these points, and the derived generalisation concerning the relative chemical shifts of axial vs. equatorial protons of geminal pairs, because in a few cases of spectra reported in the literature the assignments for such pairs appear to require reversal if they are to conform to the normal pattern. It has generally not been possible for us to confirm the reversals experimentally, but we consider that the regularities noted above provide reasonable justification for some interchanges of published geminal-pair assignments, especially at C-15 and in a few cases at C-11. We have accordingly reversed these chemical shifts in Table 2, and indicated this by a superscript (r).

In a few other cases, where we feel that there is reason to question the published assignments, but uncertainties remain because of the neighbouring pattern of substitution, chemical shifts are listed as reported, but are superscripted (q) to indicate that we consider further confirmation necessary. Some of the $16\alpha/\beta$ pairs mentioned above come into this category. Finally, the signals from protons comprising geminal pairs in the flexible side chains of bile acids and sterols have not yet been individually determined either by us or by other workers; they present a significant challenge.

Effects Due to Hydroxy Substituents.—The ¹H chemical shift increments due to hydroxylation have been reported for 5α androstan- 3α - and 3β -ols, and for *cis*- and *trans*-4-t-butylcyclohexanol.²¹ Our data for hydroxylated steroids are broadly consistent with those increments but show wider variations and a few quite dramatic exceptions, which have no obvious explanation. Our results also extend to structural relationships not previously covered.

 α -Effects. The observed carbinol proton chemical-shift increments cover a wide range, from 2.84 ppm for 15 α -H in 15 β -ols to *ca.* 1.85 ppm for 2-H in 2-ols. There is no obvious rationale, although we note that all the smaller increments (<2.1) are those for α -protons where the hydroxy group is immediately adjacent to the 4-en-3-one system (at C-2 and C-6).

 β -Effects. Protons at β -carbon atoms (vicinal to hydroxy groups) show shift increments which depend both upon their conformational relationship to the hydroxy group and upon the secondary or tertiary character of the hydroxy site and of the β carbon position. The largest increments (ca. 0.25 ± 0.05) are normally observed when the hydroxy group and the β -proton are either both axial or both equatorial (trans). There are, however, a few marked exceptions where the β -proton is at a tertiary site [e.g. 8β -H (7 α -OH) or 9α -H (11 β -OH)], where the increment is quite small. Small increments, generally within the range 0.1 \pm 0.05, are observed in the majority of cases where the hydroxy group and the β -proton are cis related (axial/equatorial or vice versa). Again there are exceptions, however, including a few where the increment has a small negative value [e.g. the sterically compressed 2α - and 4α -H in 3α -hydroxy-5 β -cholan-24-oic acid (142), and 2β -H in 5α androstan- 3β -ol (13)]. One factor in deciding the magnitude of these, and indeed of all hydroxylation increments, may be the rotamer population about the C-O bond for the particular compound, and perhaps also the consequent time-averaged disposition of the solvent cage in the vicinity of the hydroxy group.

 γ -*Effects.* Axial hydroxy groups, as would be expected, invariably introduce large increments for γ -axial protons, by virtue of spatial proximity and Van der Waals compression. Positive increments in the range 0.4 \pm 0.1 ppm are typical.

^a sec - OH, (+); tert - OH, (+++)

Figure 5. ¹H Chemical-shift increments due to hydroxy substituents: (a) equatorial OH; (b) axial OH. Ranges within which increments are normally found are given by the following scale (ppm): (+ + +) + 0.4 to +0.6; (+ +) + 0.2 to +0.4; (+ +) + 0.1 to +0.25; (+) + 0.02 to +0.15; $(\pm) -0.1$ to +0.1 (variable sign); (-) -0.15 to -0.02.

Similar effects operating across the five-membered ring D have been noted ⁴³ in the very large 17α -H shift (*ca.* 0.68) caused by a 14α -hydroxy substituent, and are seen operating in the reverse situation, when 14α -H is shifted strongly downfield by a 17α hydroxy or -acetoxy group.

There are few instances involving γ -equatorial protons. Whether the hydroxy group is axial or equatorial, γ -equatorial proton increments are relatively small, and in one case²¹ reported to be negative. Axial protons are likewise only slightly affected by γ -equatorial hydroxy groups, with observed increments in the range from +0.08 to an exceptional -0.13 (9 α -H, 12 β -OH).

 δ (1,4)-*Effects across six-membered rings.* These are small, and may be of either sign (normally to within 0.1 ppm).

 δ (1,4)-*Effects involving adjoining rings.* When the hydroxy group is at a location corresponding to that in an all-*trans* perhydrophenanthren-1-ol, it has a significant deshielding effect on spatially adjacent protons in the third ring (specifically, 11-H in 1-ols, 1-H in 11-ols, and the corresponding locations when one of the rings is five-membered, *i.e.* 15-H in 7-ols, and 7-H in 15-ols). With the hydroxy group equatorial, increments for δ -axial or quasi-axial protons lie in the range 0.2–0.4 ppm: for δ -equatorial protons, which are spatially even nearer, the range is from 0.3 to 0.65 ppm. For axial-OH, increments are less pronounced (*e.g.* for equatorial or quasi-equatorial-H, 0.1 to 0.3; for axial or quasi-axial-H, 0.03 to 0.25), consistent with somewhat greater spatial separation.

Remote effects. Although longer-range effects than those discussed above are relatively small, some occur fairly regularly and are not negligible. We note especially that axial hydroxy groups tend to cause downfield shifts for remote axial protons by up to 0.1 ppm, especially but not exclusively when both the hydroxy group and the remote axial proton are on the same face of the molecule (*e.g.* 2β -H and 11β -H in the presence of 6β -OH).

The main effects of hydroxy substituents on the chemical

Table 4	I. N	lean subst	ituent	increments in	n chemica	al shift	(δ)	(for steroida	l 4-en-3	-ones u	nless (otherwise	e indicated).
---------	------	------------	--------	---------------	-----------	----------	-----	---------------	----------	---------	---------	-----------	---------------

Н	2α-ОН	2β-OH ^a	4-OH	6α-OH	6β-ОН	7α-OH	7β-ОН	9-OH	11α-OH	11β - ΟΗ	12α-OH ^{<i>b</i>}	12β-OH ^c	14-OH	15α-OH
1α	-0.12	0.79	-0.01	0.06	0.01	0.08	0.05	0.71	0.31	0.14	0	-0.02	0.06	0.02
1β	0.34	-0.49	-0.02	0.01	0.02	0.03	0.01	-0.32	0.63	0.16	-0.06	0.03	0.01	0.01
2α	—	1.84	0.17	0.03	0.06	0.03	0.01	0.01	-0.01	0.01	-0.07	0.04	0	-0.01
2β	1.85	—	0.12	0.01	0.10	0.01	0.01	0.02	0.01	0.05	-0.02	0.15	0	0
4	0.07	0.08	_	0.46	0.10	0.07	0.02	0.15	0	-0.05	0.02	-0.01	0.01	0
6α	0.04	-0.03	0.73	—	2.07	0.14	0.24	0.02	-0.01	-0.05	0.07	0	0.03	0.03
6β	-0.01	0.11	0.40	1.93	_	0.25	0.06	0.06	-0.02	0.07	-0.04	0	0.05	0.01
7α	0.01	0.01	-0.05	0.05	0.21	_	2.42	0.40	0.03	0.01	0.04	-0.04	0.36	0.21
7β	0.01	0.13	0	0.32	0.15	2.13	_	-0.23	-0.02	0.14	0	-0.01	0.12	0.33
8	0.01	0.14	-0.06	0.06	0.43	0.05	0.03	-0.38	-0.02	0.43	0.01	-0.09	0.29	0.21
9	0.02	0.47	0	0.01	-0.02	0.41	0	_	0.17	0.02	0.38	0.04	0.52	0.05
11α	0	0.20	0	0.02	-0.03	0.05	0.03	0.18	_	2.77	0.08	0.20	0	0.01
11β	0	0.10	-0.03	-0.01	0.06	0.01	0.02	0.34	2.60	_	0.27	-0.07	-0.02	-0.01
12α	-0.01	0.04	-0.01	-0.01	-0.01	-0.01	-0.03	0.27	0.06	0.23	—	1.99	0.58	0.10
12β	0.01	0.03	0	0.01	0.02	-0.02	0	-0.17	0.28	0.12	1.99	_	0.30	-0.03
14	-0.01	0.02	-0.03	0.05	0	0.40	0.15	0.49	0.09	-0.05	0.46	-0.13	—	0.03
15α	-0.01	-0.03	0.04	0.04	0.01	0.11	0.31	-0.06	-0.01	0.03	0.06	_	-0.04	_
15β	-0.01	0	-0.01	0.04	0.05	0.03	0.37	-0.01	-0.02	0.07	0.04	0.13	0.43	2.84
16a	0	-0.01	0.01	0.03	0.03	0.04	0.02	0.01	0.03	-0.01	0.10	0.39	0.19	-0.12^{g}
16β	0.01	-0.01	0.01	0.01	0.01	0.02	0	0.02	0	0.01	-0.07	-0.19	0.06	0.62 ^h
17α	0	0.02	-0.05	0	0	0.05	-0.04	0.07	0.03	-0.05	0.55	-0.08	0.68	0.27
18	0	0	-0.01	-0.01	0.03	0.01	0.02	0.01	0.03	0.24	0.05	0.10	0.13	0.03
19	0.11	0	-0.02	0.01	0.20	0.01	0.02	0.14	0.13	0.26	-0.02	0	0.02	0.01
21	0	0	-0.01	-0.01	0	0.01	0.01	0	0.01	-0.02	0.03	-0.01	0	0.02

^a 2 β -Hydroxy steroidal 4-en-3-ones have an inverted chair conformation in ring A (R. D. Burnett and D. N. Kirk, *J. Chem. Soc., Perkin Trans.* 1, 1973, 1830; see also ref. 60). This accounts for the exceptionally large and atypical shift increments. ^b Data for one compound only. ^c From comparison of 12 β ,15 α -dihydroxy- and 15 α -hydroxy-progesterones. ^d From comparison of testosterone with androst-4-en-3-one. ^f Increments associated with the doubly bridged 11 β ,18;18,20-diepoxy-20-hydroxy ('hemiacetal') and the singly bridged

shifts of neighbouring and remote protons are illustrated in Figure 5. Although only semiquantitative, in view of the numerical ranges covered by the observed increments, these indications should have some value in future analyses or prediction of features of the ¹H spectra of steroids not included in this survey.

Experimental

¹H NMR spectra were recorded on a Bruker WH-400 spectrometer [University of London Intercollegiate Research Service (ULIRS) at Queen Mary and Westfield College], or on a Bruker AM-500 or AM-400 at NIMR, Mill Hill, London, or on a Jeol GSX-500 (ULIRS, at Birkbeck College, London), or in a few cases on a Bruker AM-250 spectrometer at Queen Mary and Westfield College. Some of the data reported here were obtained by use of more than one of these spectrometers; chemical shifts corresponded well, so the particular instruments used for each compound are not indicated.

Spectra are with reference to Me₄Si as an internal standard, except in some cases where the solvent was CD₃OD, and the signal at δ 3.30 due to residual CHD₂OD was used as the standard. Wherever the available quantity of steroid was sufficient, spectra were recorded for solutions at a concentration of *ca*. 20 mg cm⁻³. Spectra were obtained at a uniform temperature of 303 K. CDCl₃ was 99.8% D and CD₃OD was 99.96% D, both from Goss Scientific Instruments Ltd., Ingatestone, Essex.

Proton Homonuclear Correlation Spectroscopy (COSY and

COSYDEC).—Pulse sequences with N-type coherence transfer pathway selection were used, the data being processed to give absolute value presentation [a $\pi/3$ mixing pulse was used for both COSY and COSYDEC experiments and the duration of the mixing time for COSYDEC was 0.2 s]. 2K data points were collected for t_2 ; the number of scans per increment and the sweep width varied depending on the sample. Not more than 512 points were collected for t_1 , and zero-filling was performed to give a symmetrical matrix after 2D Fourier transformation. Sine-bell window functions were used in both dimensions.

Carbon-Proton Correlation.—The pulse sequence of Bax and Morris⁶² was used, assuming a value of 135 Hz for $J_{C,H}$ to calculate the delays in the pulse sequence. 2K data points were collected for t_2 (¹³C) and 256 points for t_1 (¹H). Sweep widths and the number of scans per increment were set depending on the sample. A sine-bell window function was used in both dimensions and the data were presented in absolute value mode.

NOE Difference (NOEDS).—Irradiation power was adjusted to the minimum necessary to saturate the appropriate signal. An irradiation time of 1 s was used with a 5 s relaxation delay. Where multiplets were irradiated, the frequency was switched rapidly between all the lines of the multiplet to eliminate selective population transfer (SPT) effects; a 90° read pulse was also used for this reason. Irradiation was cycled between onresonance lines and a control frequency (at one end of the spectrum) every 16 scans. 32 K points were acquired, and the subtraction to obtain a difference spectrum was performed in the time domain.

		16β-OH ^{\$}		17β-OH ^d	19-OH	21-OH	_		17-Oxo			Aldosterone ^f	
15β-ОН	16a-OH		17a-OH				Δ^1	Δ^6		$\frac{\Delta^{2} vs.}{5\alpha - H}$ (3-oxo)	17β-COMe*	Hemi- acetal	20-Oxo form
0	0.01	0	-0.01	0	0.02	-0.01	_	0.03	0	0.36	0.02	0.03	0.01
0	0	0.01	-0.02	0	0.32	-0.01	_	-0.02	0	0.02	0.01	0.18	0.16
-0.02	0.01	0	-0.04	0.04	-0.07	-0.07	_	0.10	0.03	0.04	0.04	0.09	0.09
0.01	0	0.02	-0.02	-0.02	0.27	-0.04	_	0.16	-0.02	0.07	-0.01	0.15	0.15
0.02	0.01	0.01	0.01	0	0.11	-0.01	0.34	-0.06	0.03	—	0	-0.01	-0.01
0.04	0.02	0	0.08	0.03	0	-0.01	0.06	_	0.07	0.93	0.03	0.07	0.07
0.07	-0.01	0	-0.01	0.01	0.07	-0.01	0.06	_	0	1.08	-0.01	0.15	0.15
0.08	0.02	0.03	0.05	-0.04	-0.06	0.03	0	_	0.08	0.11	0.02	0.17	0.09
0.28	0.04	0.02	0	-0.02	-0.01	0	0.10	_	0.12	0.18	0	0.19	0.11
0.40	0.02	0.07	0.03	0.09	0.08	0.04	0.09	0.66	0.27	0.19	0.09	0.21	0.14
0.06	0.03	0.02	0	-0.02	0.11	-0.01	0.11	0.27	0.05	0.19	0.04	0.17	0.09
0.01	0	0.02	0.02	0.03	0.07	-0.03	0.18	0.02	0.13	0	0.08	3.19	2.94
0.01	-0.01	0.03	-0.04	0	0.03	-0.03	0.24	0.01	0.04	0.04	0.03	_	—
0.01	0.10	0.03	0.24	-0.04	-0.09	0.16	0	0.04	0.14	0.02	0.32	-0.13	-0.02
-0.01	-0.03	0.05	-0.64	0.09	0.09	-0.16	0.06	0.03	0.09	0.04	0.31	0.44	0.75
-0.11	0.36	-0.15	0.55	0.06	-0.08	0.02	-0.03	0.20	0.39	0	0.26	0.35	0.37
2.61	-0.02	0.62	0.13	-0.07	-0.04	0.05	0	0.18	0.29	0.04	0.03	0.14	0.19
_	0.46	0	0.10	0.10	-0.05	0:08	0.02	0.15	0.38	0.05	0.06	0.12	0.16
0.56	_	2.10	-0.08	0.46	-0.06	0.01	-0.02	0.04	0.49	0.04	0.05	-0.08	0.18
0.05	2.68 ^j	_	0.50	-0.15	-0.05	0.02	-0.01	0.05	0.86	0.04	0.56	-0.05	0.11
-0.06	-0.12	-0.25	_	_	0	-0.07	0.07	0.07	_	0.04	1.37	0.11	0.45
0.28	0.04	0.07	0.10	0.05	-0.03	0.03	0.02	0.05	0.18	0.03	-0.08	4.70	4.30
0.02	-0.01	0.02	-0.02	0	2.67, 2.80	-0.01	0.04	-0.05	0.03	0.17	0.01	0.14	0.10
0.02	0.03		0.15	-	-0.01	—	0	0.01	_	_	_	-0.76, -0.77	0.19, 0.01

11 β ,18-epoxy-18-hydroxy('20-oxo') forms of aldosterone, each compared with 21-hydroxypregn-4-ene-3,20-dione. ^{*g*} 16 α -H increment is exceptionally 2ero in 15 α -hydroxyandrost-4-ene-3,17-dione. ^{*j*} 16 β -H increment is exceptionally 0.54 in 15 α -hydroxyandrost-4-ene-3,17-dione. ^{*j*} 16 β -H increment is exceptionally 1.91 in 16 α -hydroxyandrost-4-ene-3,17-dione.

Acknowledgements

We are grateful to the UK Medical Research Council (MRC) and the US National Institutes of Health for funding (to D. N. K.) in support of the Steroid Reference Collection, to the MRC for use of NMR facilities at the National Institute for Medical Research, Mill Hill, London, and for a grant (to D. N. K.) for the study of aldosterone metabolites, to the Wellcome Trust for a Grant for microbiological hydroxylation of steroids (to D. N. K. and K. E. S.), and to the many individual scientists, and especially to Professor Sir Ewart Jones, FRS, for donating steroids to the Steroid Reference Collection.

References

- 1 J. W. Blunt and J. B. Stothers, Org. Magn. Reson., 1977, 9, 439.
- 2 W. B. Smith, Annu. Rev. NMR Spectrosc., 1978, 8, 199.
- 3 See refs. cited in 'Terpenoids and Steroids,' ed. J. R. Hanson (Specialist Periodical Reports), The Chemical Society, London, 1979, vol. 9, p. 258; Royal Society of Chemistry, London, 1981, vol. 10, p. 202; 1982, vol. 11, p. 174; 1983, vol. 12, p. 274.
- 4 D. N. Kirk, *Nat. Prod. Rep.*, 1984, 1, 209; 1986, 3, 505; 1989, 6, 393, and refs. therein.
- 5 A. Bax, R. Freeman, T. A. Frenkiel, and M. H. Levitt, J. Magn. Reson., 1981, 43, 478.
- 6 R. Freeman, T. A. Frenkiel, and M. B. Rubin, J. Am. Chem. Soc., 1982, 104, 5545.
- 7 R. Jacquesy, C. Narbonne, W. E. Hull, A. Neszmelyi, and G. Lukacs, J. Chem. Soc., Chem. Commun., 1982, 409.
- 8 A. Neszmelyi, W. E. Hull, G. Lukacs, and W. Voelter, Z. Naturforsch., Teil B, 1986, 41, 1178.
- 9 B. G. Carter, D. N. Kirk, and P. J. Burke, J. Chem. Soc., Perkin Trans. 2, 1987, 1247.
- 10 D. H. Williams and I. Fleming, 'Spectroscopic Methods in Organic Chemistry,' 4th edn., McGraw-Hill, London, 1987, pp. 126-134.
- 11 L. D. Hall and J. K. M. Sanders, J. Am. Chem. Soc., 1980, 102, 5703.

- 12 L. D. Hall and J. K. M. Sanders, J. Org. Chem., 1981, 46, 1132.
- 13 M. W. Barrett, R. D. Farrant, D. N. Kirk, J. D. Mersh, J. K. M. Sanders, and W. L. Duax, J. Chem. Soc., Perkin Trans. 2, 1982, 105.
- 14 T. C. Wong, V. Rutar, and J.-S. Wang, J. Am. Chem. Soc., 1984, 106, 7046.
- 15 T. C. Wong and V. Rutar, J. Am. Chem. Soc., 1984, 106, 7380.
- 16 A. G. J. Sedee, G. M. J. Beijersbergen van Henegouwen, W. Guijt,
- and C. A. G. Haasnoot, J. Chem. Soc., Perkin Trans. 2, 1984, 1755. 17 A. G. J. Sedee, G. M. J. Beijersbergen van Henegouwen, W. Guijt,
- and C. A. G. Haasnoot, J. Org. Chem., 1985, 50, 4182.
 18 A. G. J. Sedee, G. M. J. Beijersbergen van Henegouwen, M. E. de Vries, and C. Erkelens, Steroids, 1985, 45, 101.
- 19 A. G. J. Sedee, G. M. J. Beijersbergen van Henegouwen, W. Guijt, and C. A. G. Haasnoot, *Pharm. Weekblad. Sci. Ed.*, 1985, 7, 202.
- 20 D. V. Waterhous, S. Barnes, and D. D. Muccio, J. Lipid Res., 1985, 26, 1068.
- 21 H. J. Schneider, U. Buchheit, N. Becker, G. Schmidt, and U. Siehl, J. Am. Chem. Soc., 1985, 107, 7027.
- 22 S. Top, G. Jaouen, A. Vessieres, J.-P. Abjean, D. Davoust, C. A. Rodger, B. G. Sayer, and M. J. McGlinchey, *Organometallics*, 1985, 4, 2143.
- 23 M. Savignac, G. Jaouen, C. A. Rodger, R. E. Perrier, B. G. Sayer, and M. J. McGlinchey, J. Org. Chem., 1986, 51, 2328.
- 24 H. Duddeck, D. Rosenbaum, M. Hani, A. Elgamal, and M. B. E. Fayez, Magn. Reson. Chem., 1986, 24, 999.
- 25 S. A. Campbell, T. A. Crabb, and R. O. Williams, *Magn. Reson. Chem.*, 1986, 24, 803.
- 26 M. Harnik, Y. Kashman, S. Carmely, M. Cojocaru, S. L. Dale, M. M. Holbrook, and J. C. Melby, *Steroids*, 1986, 47, 67.
- 27 M. Campredon, V. Quiroa, A. Thevand, A. Allouche, and G. Pouzard, Magn. Reson. Chem., 1986, 24, 624.
- 28 V. J. Robinson, A. D. Bain, and C. A. Rodger, Steroids, 1986, 48, 267.
- 29 R. D. Dawe and J. L. C. Wright, Can. J. Chem., 1987, 65, 666.
- 30 W. R. Croasmun and R. M. K. Carlson, Methods Stereochem. Anal., 1987, 9 (Two-dimensional NMR Spectroscopy), 387.
- 31 A. E. Derome, Nat. Prod. Rep., 1989, 6, 111.

- 32 H. Duddeck, J. Frelek, W. J. Szczepek, and W. J. Rodewald, Bull. Chem. Soc. Ethiop., 1987, 1, 18.
- 33 J. Drew, J.-R. Brisson, P. Morand, and A. G. Szabo, *Can. J. Chem.*, 1987, **65**, 1784.
- 34 N. Platzer, N. Goasdoue, and D. Davoust, *Magn. Reson. Chem.*, 1987, 25, 311.
- 35 K. Bischofberger, J. R. Bull, and A. A. Chalmers, *Magn. Reson. Chem.*, 1987, **25**, 780.
- 36 R. E. Perrier and M. J. McGlinchey, Can. J. Chem., 1988, 66, 3003.
- 37 T. C. Wong and G. R. Clark, J. Chem. Soc., Chem. Commun., 1984, 1518.
- 38 K. Marat, J. F. Templeton, and V. P. S. Kumar, *Magn. Reson. Chem.*, 1987, 25, 25.
- 39 K. Marat, J. F. Templeton, R. K. Gupta, and V. P. S. Kumar, Magn. Reson. Chem., 1987, 25, 730.
- 40 T. C. Wong, W. Guo, M. Bohl, M. Hubner, G. Luck, T. Steiger, and G. Reck, J. Chem. Soc., Perkin Trans. 1, 1988, 765.
- 41 W. F. Reynolds, S. McLean, J. Poplawski, R. G. Enriquez, L. I. Escobar, and I. Leon, *Tetrahedron*, 1986, **42**, 3419.
- 42 D. W. Hughes, Magn. Reson. Chem., 1988, 26, 214.
- 43 K. E. Smith, S. Latif, D. N. Kirk, and K. A. White, J. Steroid Biochem., 1988, 31, 83.
- 44 K. E. Smith, S. Latif, and D. N. Kirk, J. Steroid Biochem., 1989, 32, 445.
- 45 K. E. Smith, K. A. White, and D. N. Kirk, J. Steroid Biochem., 1989, 33, 81.
- 46 K. E. Smith, S. Latif, D. N. Kirk, and K. A. White, J. Steroid Biochem., 1989, 33, 271.
- 47 D. N. Kirk, P. J. Burke, H. C. Toms, S. A. Latif, and D. J. Morris, *Steroids*, 1989, 54, 169.
- 48 D. N. Kirk, B. W. Miller, G. Cooley, S. A. Latif, and D. J. Morris, J. Chem. Res., 1989, (S) 164; (M) 1274.

- 49 S. A. Latif, D. J. Morris, L. Wei, D. N. Kirk, P. J. Burke, H. C. Toms, and C. H. L. Shackleton, J. Steroid Biochem., 1989, 33, 1119.
- 50 K. D. R. Setchell, M. Axelson, J. Sjovall, D. N. Kirk, and R. E. Morgan, *FEBS Lett.*, 1978, 88, 215.
- 51 R. Das and D. N. Kirk, J. Chem. Soc., Perkin Trans. 1, 1984, 1821.
- 52 R. F. Zücher, Helv. Chim. Acta, 1961, 44, 1380.
- 53 R. F. Zücher, Helv. Chim. Acta, 1963, 46, 2054.
- 54 J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, Sir Ewart R. H. Jones, V. Kumar, D. G. Meakins, Y. Morisawa, and E. E. Richards, J. Chem. Soc. C, 1970, 250.
- 55 M. Karplus, J. Am. Chem. Soc., 1963, 85, 2870.
- 56 N. S. Bhacca and D. H. Williams, 'Applications of NMR Spectroscopy in Organic Chemistry,' Holden-Day, San Francisco, 1964.
- 57 J. K. M. Sanders and B. K. Hunter, 'Modern Methods in NMR Spectroscopy,' Oxford University Press, 1987.
- 58 G. Cooley, D. N. Kirk, R. E. Morgan, and M. L. Sá e Melo, J. Chem. Soc., Perkin Trans. 1, 1977, 1390, and refs. therein.
- 59 D. N. Kirk and H. C. Toms, Steroids, in press.
- 60 'Atlas of Steroid Structure,' vol. 1, eds. W. L. Duax and D. A. Norton, Plenum, New York, 1975; vol. 2, eds. J. F. Griffin, W. L. Duax, and C. M. Weeks, Plenum, New York, 1984.
- 61 C. E. Gomez-Sanchez, D. N. Kirk, R. D. Farrant, and L. Milewich, J. Steroid Biochem., 1985, 22, 141.
- 62 A. Bax and G. Morris, J. Magn. Reson., 1981, 42, 501.

Paper 0/00483I Received 1st February 1990 Accepted 9th March 1990